Życie w Kosmosie[3]. Wszechświat uszyty na miarę

Park kosmologiczny Crawick Multiverse. Licencja Creative Commons (autor zdjęcia: James Johnstone)

Dotychczas rozważaliśmy możliwość istnienia życia i inteligencji we Wszechświecie. Istnienie i trwanie samego Wszechświata uważaliśmy za pewnik, niewzruszalny jak matematyczny aksjomat. Wszechświat istnieje od 13,8 mld lat i będzie istniał co najmniej drugie tyle, jak nie dłużej. Nie znamy jego struktury i dynamiki, nie wiemy, czy się rozwija czy zwija, nie wiemy też jak powstawał i dojrzewał. Nie przeszkadza nam to jednak w spekulacjach „co by było, gdyby”. W artykule postaram się przedstawić, posługując się metodą eksperymentu myślowego, teorie, według których nasz Wszechświat także jest czymś unikalnym. Oraz, czy życie oraz wyrosła na nim inteligencja są unikalne. Posługując się słynnym cytatem z Juliusza Verne’a: mobilis in mobili, czyli „ruchome w ruchomym” zastanowimy się, czy rzeczywiście mamy do czynienia z piętrowym złożeniem nieprawdopodobnych przypadków? 

W fizyce istnieje wiele stałych. Termin podstawowa stała fizyczna powinien ograniczać się do stałych bezwymiarowych. Jednak niektóre, jak prędkość światła w próżni (c), przenikalność elektryczna próżni (ε0), stałe Plancka (h) czy stała grawitacyjną (G) są liczbami mianowanymi. Liczba stałych fizycznych jest dość duża. Wystarczy powiedzieć, że Model Standardowy wymaga 25 stałych, z czego połowa to masy cząstek, których „bezwymiarowość” uzyskujemy odnosząc masy cząstek do masy Plancka. Wartości stałych fizycznych nie da się wyprowadzić za pomocą wzorów z innych wielkości, ich wartości są wyznaczane tylko z pomiarów. Właśnie ze względu na wielość stałych w Modelu Standardowym teorię tę uważa się za mało elegancką, niedopracowaną i usilnie poszukuje się teorii „piękniejszej” i „zgrabniejszej”, bardziej kompaktowej. Co nie znaczy, że ta teoria nie jest dokładna. Jest bardzo dokładna.

Jedną z najbardziej tajemniczych, a przez to bardziej medialnych stałych jest stała struktury subtelnej oznaczana grecką literą α. Pisał o niej Lucas Bergowsky w wartym przeczytania tekście 1/137. Wartość stałej struktury subtelnej jest fizyczną „wisienką na torcie” naszych rozważań o Wszechświecie uszytym na miarę. Tako rzecze Lucas: Gdyby wartość stałej struktury subtelnej była inna – na przykład byłaby większa – to chemia nie byłaby możliwa, gdyż elektrony byłyby zbyt mocno związane z jądrem. Nigdy nie powstałby żaden związek chemiczny. Gdyby była mniejsza, to jądra nie byłyby stabilne, a więc reakcje może i by zachodziły, ale żaden pierwiastek nie miałby szans na długie istnienie. Można więc powiedzieć, że ta stała ma idealnie taką wartość jaka jest nam potrzebna.

Eksperymenty myślowe polegające na wyobrażaniu (i obliczaniu) Wszechświata, w którym stałe przyjmują inne wartości niż te, które znamy, prowadzą do zaskakujących wniosków. Niektóre kombinacje stałych wykluczają wprost narodziny Wszechświata, jaki znamy. Inne prowadzą do wniosku, że Wszechświat nie wyjdzie z okresu niemowlęctwa albo, wręcz przeciwnie, zestarzeje się w okamgnieniu. Niektóre modele nie zawierają gwiazd i galaktyk albo ciężkich pierwiastków. Wszystko przez to, że stałe tych modeli różnią się nieznacznie od tych, które znamy.

Już na początku XX wieku zastanawiano się na temat Wszechświata dostrojonego. W 1913 roku chemik Lawrence Joseph Henderson napisał Sprawność środowiska, o znaczeniu wody i środowiska dla organizmów żywych, jako czynników warunkujących powstanie życia. Fred Hoyle, o którego paradoksie pisałem w poprzednim odcinku, również opowiadał się za precyzyjnie dostrojonym wszechświatem (The Intelligent Universe, 1983). Lista właściwości antropicznych, pozornych wypadków o charakterze niebiologicznym, bez których nie mogłoby istnieć życie oparte na węglu, a co za tym idzie i życie ludzkie, jest obszerna i imponująca

Teoria dostrojonego wszechświata zakłada, że efekt motyla w odniesieniu do podstawowych stałych fizycznych może sprawić, że powstające wszechświaty mogą być diametralnie różne przy nawet minimalnych rozbieżnościach stałych fizycznych w stosunku do aktualnie obowiązujących. Stephen Hawking ujął to tak: Prawa nauki, jakie znamy obecnie, zawierają wiele podstawowych liczb, takich jak wielkość ładunku elektrycznego elektronu i stosunek mas protonu do elektronu. … Godnym uwagi faktem jest to, że wartości tych liczb wydają się być bardzo precyzyjnie dostosowane, aby umożliwić rozwój życia.. Nie tylko życia, także inteligencji biologicznej.

Gdyby na przykład silne oddziaływanie jądrowe było o 2% większe niż jest, to zaburzona zostałaby fizyka gwiazd, i to w pierwszych minutach po Wielkim Wybuchu. Dotyczy to dość dziwnej cząstki, diprotonu, czyli izotopu helu, odgrywającego kluczową rolę w procesie syntezy jądrowej zachodzącej wewnątrz gwiazd. 

Walter Bradley opisuje to tak („Designed or Designoid” https://www.discovery.org/a/18157/):

Zmniejszenie stałej oddziaływania silnego o 2% blokowałoby syntezę jąder o większej liczbie protonów, uniemożliwiając powstawanie pierwiastków cięższych od wodoru. Z drugiej strony, gdyby oddziaływanie silne i związana z nią stała były większe o zaledwie 2 procent, wówczas cały wodór zostałby od początku przekształcony w hel i cięższe pierwiastki, pozbawiając Wszechświat wody i paliwa gwiazdowego.

Takich wzajemnych zależności stałych fizycznych, determinujących istotne cechy Wszechświata jest więcej. Martin Rees, fizyk i kosmolog, Królewski Astronom i prezes Royal Society sformułował precyzyjne dostrojenie wszechświata w kategoriach sześciu bezwymiarowych stałych fizycznych, m.in.:

  • stosunek siły elektromagnetycznej do siły grawitacji pomiędzy parą protonów, wynosi 1036. Według Reesa, gdyby był on znacznie mniejszy, mógłby istnieć tylko mały i krótkotrwały wszechświat. Gdyby był wystarczająco duży, protony odpychałyby się tak mocno, że większe atomy nigdy by nie powstały.
  • parametr gęstości Omega (Ω), to stosunek zależnej od stałej grawitacji gęstości masy Wszechświata do „gęstości krytycznej” i wynosi w przybliżeniu 1. Gdyby siła grawitacji była zbyt duża w porównaniu z ciemną energią i początkowym tempem ekspansji kosmicznej, Wszechświat zapadłby się, zanim mogło wyewoluować życie. Gdyby grawitacja była zbyt słaba, nie powstałyby żadne gwiazdy. 
  • wydajności energetyczna jądrowej syntezy wodoru w hel (ε), wynosząca 0,007, co znaczy, że 0,7% masy nukleonów zamienia się w energię. Gdyby wynosiło 0,006, proton nie mógłby związać się z neutronem i mógłby istnieć tylko wodór i nie powstałyby pierwiastki cięższe. Gdyby ε był większy niż 0,008, nie istniałby wodór, ponieważ zostałby „spalony” wkrótce po Wielkim Wybuchu.

Jak widać, są to przykłady rodzaju „być albo nie być” dla całego Wszechświata.

Przeciwnicy teorii dostrojonego Wszechświata uważają, że dostrojenie może być iluzją wynikającą z niewiedzy. Postęp w fizyce teoretycznej i kosmologii może sprawić, że pozorne dostrojenie parametrów fizycznych w naszym obecnym rozumieniu znajdzie inne, bardziej fundamentalne wytłumaczenie. Lawrence Krauss uważa, że pewne wielkości wydawały się niewytłumaczalne i precyzyjnie dostrojone, a kiedy je zrozumiemy, nie wydają się już tak precyzyjne. Musimy mieć pewną perspektywę historyczną„. Niektórzy fizycy wręcz twierdzą, że możliwe jest, iż ostateczna fundamentalna teoria wszystkiego wyjaśni podstawowe przyczyny pozornego dostrojenia każdego parametru. 

Mniej ostateczne, acz nadal w kosmicznej skali, proporcje stałych fizycznych mogą wpływać na ewolucję gwiazd. Możliwość istnienia różnych rodzajów gwiazd, różnych ścieżek ich ewolucji zależy od związku pomiędzy dwiema uniwersalnymi stałymi. Są to: stała grawitacji i stała struktury subtelnej. Wartości tych stałych są znakomicie zbalansowane w jedyny sposób, który pozwala na istnienie gwiazd przeciętnych, takich jak Słońce. Gdyby grawitacja była nieco silniejsza, a elektromagnetyzm nieco słabszy, wszystkie gwiazdy byłyby czerwonymi karłami. Gdyby było odwrotnie, wszystkie gwiazdy byłyby niebieskimi olbrzymami. Każda z tych skrajności uniemożliwiałaby powstanie życia. Czerwone karły wytwarzają stosunkowo mało światła, niewystarczającego np. do wspomagania fotosyntezy. Niebieskie olbrzymy emitują zbyt dużo promieniowania i żyją za krótko, pozostawiając zbyt mało czasu na rozwój życia. Ścieżki ewolucji gwiazd zależne od początkowego rozmiaru obłoku protoplanetarnego przedstawia Ryc. 1. Jak widać Słońce jest względnie małą, przeciętną gwiazdą umiejscowioną mniej więcej w środku listy typoszeregów.

Ryc. 1. Ścieżki ewolucji gwiazd. Wikimedia Commons

Zgodnie z drugą zasadą termodynamiki entropia (fizyczna miara nieuporządkowania) Wszechświata stale rośnie. Co to oznacza? Prawo wzrostu entropii mówi, że ​​energia każdego izolowanego układu spontanicznego, czyli także Wszechświata, ulega rozproszeniu, a jego stan zbliża się do stanu równowagi cieplnej. Wszechświat dąży do równowagi i kiedyś ostatecznie go osiągnie. Nie będzie wtedy możliwy żaden transfer energii, energia będzie rozprowadzona równomiernie, a wszechświat zamrze (i zemrze) w absolutnym bezruchu. Nazywamy to śmiercią cieplną wszechświata.

Przeprowadźmy eksperyment myślowy i zacznijmy cofać się w czasie. Entropia będzie stopniowo malała, a możliwości przepływu energii będą rosły. W miarę zbliżania się do momentu Wielkiego Wybuchu entropia będzie dążyła do minimum. Spróbujmy teraz odpowiedzieć na pytanie: jakie jest prawdopodobieństwo zaistnienia takiego stanu? Zgodnie z zasadami zachowania wszechświat o niskiej entropii zawiera taką samą ilość materii/energii co wszechświat o wysokiej entropii, a różnica polega tylko na jej rozmieszczeniu. Roger Penrose, fizyk i matematyk obliczył nawet, że spośród 1010^123 możliwych stanów początkowych Wszechświata tylko jeden miałby tak niską entropię jak nasz Wszechświat w chwili narodzin. Pierwszą narzucającą się hipotezą jest teologiczny Akt Stworzenia. Jest to wygodna myślowa proteza, nie wymaga dowodu, ani nawet uzasadnienia. Czy skrajne nieprawdopodobieństwo dowodzi, że zadziałał nadprzyrodzony plan? Zdaniem Penrose’a podczas Wielkiego Wybuchu musiało istnieć bardzo szczególne ograniczenie fizyczne, które zmusiło go do niskiej entropii. Nie jest to wytłumaczenie bardzo różniące się od Deus ex machina, ale cóż, nie bez powodu Wielki Wybuch jest nazywany Wielką Osobliwością. Richard Dawkins, biolog ewolucyjny i znakomity popularyzator, uparty ateista, wymyślił (Wspinaczka na szczyt nieprawdopodobieństwa) nawet określenie: designoid, oznaczające coś co pojawiło się przez przypadek, ale wydaje się, że zostało zaprojektowane. Dawkins miał oczywiście na myśli pozorne, zaprzeczające zdrowemu rozsądkowi trudno wytłumaczalne nieprawdobieństwo będące efektem ewolucji. 

Wyjątkowość naszego Wszechświata jako bytu niezmiernie mało prawdopodobnego uruchomiło różne ścieżki myślenia. Bo przecież nie można pogodzić się z czymś, co nie jest wytłumaczalne. Tak działa nauka, tak działa religia, tak wychowujemy dzieci. Powiedzenie „tak bo tak, i już!” nie wystarczy. 

Koncepcja wieloświata powstała już u Starożytnych. Ewoluowała z biegiem czasu i była przedmiotem dyskusji w różnych dziedzinach, w tym w kosmologii, fizyce i filozofii. Uważa się, że prekursorem koncepcji wieloświata jest Anaksymader.

W 1952 roku Erwin Schrödinger wygłosił wykład, w którym żartobliwie ostrzegł słuchaczy, że to, co za chwilę powie, może „wydawać się szaleństwem”. Powiedział, że kiedy jego równania zdawały się opisywać kilka różnych historii, nie były to alternatywy, ale wszystkie naprawdę zdarzały się jednocześnie. Obecnie nazywamy to superpozycją i nie jest to fantazjowanie filozofów, a pełnoprawne pojęcie fizyki kwantowej. Tak, zasada nieoznaczoności i superpozycja stanów kwantowych należą do wieloświata i są widocznymi wierzchołkami tej góry lodowej.

Czym jest wieloświat (ang. multiverse)? Wieloświat jest hipotetycznym zbiorem wszystkich wszechświatów. Wszechświaty te obejmują wszystko co istnieje: całość przestrzeni, czasu, materii, energii, informacji oraz opisujących je praw fizycznych i stałych. Wszystkich wszechświatów jest nieskończenie wiele i każdy z nich jest inny. Nasz stuningowany Wszechświat jest więc naturalną konsekwencją takiego multiwersu i nie jest wyjątkowy. Istnieniem wielu wszechświatów, z których każdy rządzi się innymi prawami fizycznymi, może wyjaśnić dostrojenie naszego własnego Wszechświata do powstania [świadomego] życia. 

Temat istnienia obcego życia jest otwarty, a argumenty są mieszaniną faktów, teorii i hipotez. Aktualna wiedza fizyczna i biologiczna zdają się potwierdzać, że życie jest czymś wyjątkowym i wymaga wyjątkowych warunków, aby powstać i ewoluować. Jak dotychczas nie znaleziono żadnego, absolutnie żadnego życia poza Ziemią. Proste cząsteczki i rodniki organiczne znalezione w Kosmosie o niczym szczególnym nie świadczą. My jednak wiemy swoje. Wiara w Kontakt jest tak silna, że nie zawaham się nazwać jej religią. Tak duży jest pierwiastek nieracjonalności w takim myśleniu. Niech więc żyją mityczni Kosmici, jak najdłużej. Bo, badając Kosmos odkrywamy siebie samych.

Życie w Kosmosie, czyli z pamiętnika malkontenta

Licencja: FOTOKITA/Shutterstock

Większość artykułów popularnonaukowych nie opiera się pokusie naciągania faktów i hipotez, mniej lub bardziej propagując tezę o obowiązkowym wyposażeniu Wszechświata w inteligentne życie, w dodatku na modłę ziemską, czyli białkowe.

Zacznijmy od definicji. Nie ma jednej definicji życia. Jest ich wiele, różnych, zależnych od punktu widzenia.

Tibor Gánti, węgierski biolog, wyodrębnił osiem cech życia, pięć koniecznych i trzy potencjalne.
Cechy konieczne obiektu żywego:
– jest wyodrębniony ze świata zewnętrznego
– posiada metabolizm
– jest wewnętrznie stabilny
– posiada podsystem przechowywania i przetwarzania informacji
– procesy wewnątrz systemu żywego są regulowane
Cechy potencjalne:
– musi mieć zdolność do wzrostu i rozmnażania
– w replikacji musi zachodzić zmienność (ewolucja)
– musi być śmiertelny

Widać, że pisał to biolog, jego definicja dotyczy życia biologicznego. Możemy jednak definiować życie z innych punktów widzenia. Na przykład fizyk powiedziałby, że życie może zmniejszać entropię, przez co organizmy żywe stają się coraz bardziej skomplikowane. Inaczej mówiąc organizmy żywe zmniejszają swoją entropię, pobierając energię z otoczenia. Cybernetyk określiłby życie jako system sprzężeń zwrotnych ujemnych podporządkowanych nadrzędnemu sprzężeniu zwrotnemu dodatniemu (tę akurat definicję zawdzięczamy Polakowi, Bernardowi Korzeniowskiemu). Z punktu widzenia termodynamiki życie to samoorganizujący system nierównowagowy, którego procesami rządzi program, przechowywany w postaci symbolicznej (informacja genetyczna), zdolny do reprodukcji, włącznie z tym programem (Lee Smolin). Z punktu widzenia teorii informacji życie to kontinuum samopodtrzymującej się informacji.

Wszystkie te definicje są prawdziwe, ale nie wyczerpują tematu. Więcej, tworzą mgłę pojęciową. Dlaczego? Czy wirus jest żywy? Czy wirus komputerowy jest żywy? Albo starożytna gra komputerowa Life? Cząstkowe, izolowane punkty widzenia tworzą doskonałe środowisko do sporów i niekończących się akademickich debat, rozmów o wszystkim i niczym. Dlatego najbardziej podoba mi się prosta i krótka definicja mówiąca, że życie jest materią, która może się rozmnażać i ewoluować w celu przetrwania. Definicja ta dobrze nadaje się do naszych rozważań o życiu pozaziemskim, nie nacechowanych antropocentryzmem, DNA-centryzmem i innymi naleciałościami kulturowymi zniekształcającymi myślenie.

Wiemy już, że nie znamy ścisłej definicji życia. Może w takim razie wiemy, jak ono powstało na Ziemi? Nie wiemy i nawet nie mamy pomysłu, jak się tego dowiedzieć. Wiemy jak działa życie w stanie rozwiniętym, ewolucja, ale nie wiemy, jak powstało pra-życie i jak się rozwijało, niepostrzeżenie przeobrażając się w życie. Jak więc, do jasnej, możemy cokolwiek powiedzieć o życiu pozaziemskim, które spełnia warunek stawiany przez definicję teorii informacji, tę o kontinuum samopodtrzymującej się informacji? Przecież organizacja materii (i energii) spełniająca podstawowe warunki definicji życia nie musi być organizmem. Może być oceanem, jak u Stanisława Lema w powieści „Solaris”, może być zorganizowanym rojem mikroautomatów, jak w „Niezwyciężonym”, w którym życie jest pochodną ich ilości i wymiany informacji między nimi. Nie znamy struktury gwiazd, skąd możemy wiedzieć, że we wnętrzu gwiazd nie kwitnie życie gwiazdowe? Inteligentne życie gwiazdowe. Niezawodny Lem napisał opowiadanie “Prawda”, które traktuje o samoorganizującej się plazmie. I nie jest to czcza fantazja, gdyż badania spolaryzowanej plazmy dowodzą, że wyobraźnia Stanisława Lema mogła być prorocza. Więcej można poczytać tu.

No dobrze, zawęźmy dziedzinę poszukiwań, poszukajmy życia białkowego. Zawężamy jeszcze bardziej – poszukujemy aminokwasów, podstawowych cegiełek budulcowych naszego, ziemskiego życia. Sonda Stardust przelatując przed jądro komety 81P/Wild-2 zebrała próbki, które przesłała na Ziemię. Po kilku latach okazało się, że próbka zawiera najprostszy aminokwas – glicynę o wzorze C2H5NO2 . Mamy więc nadzieję, że z tych najprostszych cząsteczek organicznych, w odpowiednich warunkach, powstaną bardziej skomplikowane związki, które, jeśli będą miały dużo czasu i bardzo dużo szczęścia, utworzą pra-DNA i nabędą zdolności do samoreplikacji i ewolucji. Dalej, mamy nadzieję, sprawy potoczą się gładko i po kilku miliardach lat po planecie-szczęściarzu będą chodziły małe zielone ludziki.

Jeśli wyczuwasz ironię w tym, co wyżej napisałem, to masz rację. Nie wiemy, czego szukamy, więc szukamy rzeczy najprostszych – cząsteczek organicznych. Ponieważ jesteśmy ludźmi, do wszystkiego przykładamy ludzką miarę. Najlepszym przykładem jest program SETI, poszukiwanie kosmicznej inteligencji poprzez nasłuchiwanie i analizę sygnałów radiowych docierających do naszych anten z Kosmosu. Celem programu, zainicjowanego w 1999 roku było nawiązanie kontaktu z cywilizacjami pozaziemskimi. Po 21 latach bezowocnych prób wyłuskania „inteligentnej” transmisji radiowej z kosmicznego szumu, program został przerwany. Oficjalnie dlatego, że zebrano wystarczająco dużo materiału do analiz. Nieoficjalnie dlatego, że nawet najwięksi optymiści stracili nadzieję (i zapał) na jakikolwiek kontakt z kimkolwiek. Dwadzieścia lat to wystarczająco długi czas, żeby zrozumieć, że program nie miał szans powodzenia. Więcej, zdaliśmy sobie sprawę z tego, że obca inteligencja nie musi być pokojowo do nas nastawiona. W końcu dla Nich to My jesteśmy „obcy”.

Ryc. 1. Koncepcja artystyczna przedstawiająca egzoplanetę Kepler-1649c krążącą wokół swojej macierzystej gwiazdy – czerwonego karła. Egzoplaneta znajduje się w ekosferze swojej gwiazdy – w odległości, w której na powierzchni planety może znajdować się woda w stanie ciekłym. Źródło: NASA/Ames Research Center/Daniel Rutter https://www.astronomy.com/science/the-lonely-universe-is-life-on-earth-just-a-lucky-fluke/

Inteligencja

Podobnie jak życie, również inteligencja wymyka się jednoznacznej definicji. Potocznie inteligencję utożsamiamy z rozumem, ale to utożsamienie nie przybliża nas do zrozumienia, czym ona właściwie jest. Najprostsza definicja inteligencji to (Wikipedia): zdolność do postrzegania, analizy i adaptacji do zmian otoczenia. 

Wyjaśnienia wymaga też różnica między poszukiwaniem życia a poszukiwaniem inteligencji. To są różne rzeczy i nie należy ich mylić. Zaczynamy to rozumieć teraz, kiedy właśnie wybucha bomba ze sztuczną inteligencją (AI) i okazuje się, że nie bardzo wiemy, co z nią zrobić. A przecież wszystkie karty mamy w ręku, jesteśmy na początku jej rozwoju. Popełniamy jednak błąd za błędem; boimy się, ale brniemy. I żebyśmy się dobrze rozumieli, nie mam nic przeciwko AI, niech się rozwija, ale niech pozostanie tylko narzędziem, jak kontrolowana reakcja jądrowa. „Zwykła”, tradycyjna sztuczna inteligencja nam nie zagraża, ponieważ jest odtwórcza. Kompiluje treści, którymi się „żywi” i przedstawia je w zmienionej formie, na przykład w postaci prawidłowo zredagowanego tekstu. Posługuje się znanymi nam regułami, a efekty jej pracy są przewidywalne. Co innego generatywna sztuczna inteligencja (AGI), zdolna do tworzenia wiedzy, kreatywna. Obecnie prowadzone prace mają na celu stworzenie AGI, na przykład poprzez emulowanie sieci połączeń nerwowych mózgu. Cechą charakterystyczną AGI jest zdolność do tworzenia danych, na których AGI może się uczyć. Przypomnijmy, że „zwykła” AI uczy się na danych wcześniej wytworzonych przez człowieka.

Paradoksalnie, chyba wcześniej „odkryjemy” naszą własną, rodzimą sztuczną inteligencję w postaci Golema AGI, niż znajdziemy ją w Kosmosie.

Z powyższych wywodów wynika, że nie szukamy życia jako takiego, kompletnego, skończonego. Nie wiemy, jak szukać, nasza technologia dopiero co pozwoliła nam oderwać się od Ziemi. Szukamy więc życia in statu nascendi – przejawów, śladów, sygnałów, elementów, przesłanek, z których wcale nie musi cokolwiek wynikać. Robimy to dlatego, że, od kiedy zdaliśmy sobie sprawę z ogromu Kosmosu, nagle poczuliśmy się w tej piaskownicy strasznie samotni. 

Nie wiemy, jakie korzyści odnieślibyśmy, znajdując życie pozaziemskie w postaci chociażby najmniejszej bakterii, na Marsie czy innym Enceladusie. Poza zaspokojeniem ciekawości jedyną wymierną korzyścią z poszukiwań jest niewątpliwy rozwój naukowy i technologiczny, towarzyszący poszukiwaniom. Tak więc prawdziwym sensem tych poszukiwań jest przysłowiowe „gonienie króliczka” i napędzanie własnej motywacji do poszukiwań. Perpetuum mobile.

Trochę optymizmu, panowie…

Załóżmy jednak, że poszukiwania mają sens. Załóżmy, że ostatni krzyk mody, czyli egzoplanety, to realna perspektywa ich eksploracji, a może nawet eksploatacji. Pal sześć SETI, teraz egzoplanety.

W 2009 roku wystrzelono w Kosmos kosmiczny teleskop Kepler, specjalnie zaprojektowany do lokalizacji planet pozasłonecznych. Misja okazała się strzałem w dziesiątkę, do dziś odkryliśmy ponad 4000 planet, badając zaledwie 150 tysięcy układów gwiezdnych na jednym zaledwie kawałeczku nieba. Z odkrytych 4000 planet 25% jest wielkości zbliżonej do wielkości Ziemi, leżących w ekosferze swoich gwiazd. Nie są zbyt gorące ani zbyt zimne i teoretycznie posiadają warunki do syntezy bardziej złożonych związków organicznych, mogących być materiałem budulcowym Życia. Także teleskop TESS (Transiting Exoplanet Survey Satellite) będący własnością MIT tropi egzoplanety. Metoda jest podobna jak w Keplerze – detekcja osłabienia jasności gwiazdy w trakcie przechodzenia przed nią planety. W odróżnieniu od Keplera TESS skanuje całe niebo. 

Ryc. 2. Grafika obrazująca proporcje liczby planet potencjalnie nadających się do zamieszkania. Teleskop TESS. Źródła: Planetary Hability Laboratory; Abel Mendez, University od Puerto Rico at Arecibo; Tom Barclay, NASA

Droga Mleczna składa się z ponad 100 miliardów gwiazd, więc z prostego rachunku wynika, że w samej Galaktyce jest 25 miliardów miejsc, gdzie życie mogłoby się rozwinąć. Mogłoby, tylko dlaczego się nie rozwinęło? O tym w następnym rozdziale, na razie bądźmy optymistami. W oddzielnym wpisie przedstawię hipotezę jedynej (rzadkiej) Ziemi (ang. Rare Earth hypothesis) – według której Ziemia i jej otoczenie mają nieprawdopodobnie szczęśliwie dobraną kombinację parametrów astrofizycznych i geologicznych sprzyjającą powstaniu złożonego wielokomórkowego życia. Nie będę ukrywał, że ta hipoteza jest całkowicie zgodna z moim poglądem na sprawę.

Odkrycia dokonane za pomocą Keplera tchnęły mnóstwo optymizmu w więdnącą nieco dziedzinę poszukiwań ET. Znalazły się pieniądze na nowe programy badawcze, odżyła nauka zwana astrobiologią. Powstały naziemne teleskopy służące do poszukiwania śladów życia na egzoplanetach. Zainteresowanych badaniami w tej dziedzinie odsyłam do obszernego artykułu w National Geographic https://www.nationalgeographic.com/magazine/article/extraterrestrial-life-probably-exists-how-do-we-search-for-aliens.

Słów kilka o astrobiologii 

Astrobiologia to multidyscyplinarna dziedzina naukowa badająca pochodzenie, ewolucję, rozmieszczenie i potencjalne istnienie życia we wszechświecie. Właściwie trudno nazwać astrobiologię nauką, raczej filozofią próbującą odpowiedzieć na pytanie „Kim jesteśmy? Skąd przybywamy? Dokąd zmierzamy?”. Impulsem do powstania nowoczesnej astrobiologii był meteoryt marsjański ALH84001 odkryty na Antarktydzie w 1984 roku. To nic, że w meteorycie nie odkryto żadnych śladów życia, ale odkrycie pierwszych egzoplanet i postępy w mikrobiologii (szczególnie odkrycie ekstremofili) wzbudziły wielki zapał do badań w tej dziedzinie.

W życie pozaziemskie wierzono już od XIX wieku. Panowało wtedy przekonanie o życiu na Marsie i Wenus. W 1877 roku Giovanni Schiaparelii odkrył “kanały” na Marsie. Z kolei Wenus, zbliżona rozmiarami do Ziemi, tajemnicza, bo zakryta po szyję chmurami, musiała być zamieszkana, no bo jakże by inaczej. Księżyc też był murowanym kandydatem na siedlisko żywych istot. W utrwalaniu tego przekonania duży udział miała literatura fantastyczno-naukowa. Co prawda pierwsze amerykańskie i radzieckie misje kosmiczne rozwiały zapał do zasiedlenia gotowych do tego planet naszego układu, ale astrobiologia zaczęła krzepnąć jako kandydatka na nową dziedzinę nauki. Joshua Lederberg, noblista, biolog molekularny i astrobiolog w 1960 roku pisał: Astrobiologia nie jest w żadnym stopniu dziedziną bardziej fantastyczną niż plany realizacji podróży kosmicznych, a naukowcy mają obowiązek zgłębiać ten temat wraz ze wszystkimi jego konsekwencjami dla nauki i z myślą o ludzkim dobrobycie.

Carl Sagan, wielki popularyzator nauki, astronom i astrobiolog, walnie przyczynił się do jej popularności. Sagan wierzył, że na Marsie mogą znajdować się prymitywne formy życia. Niestety okazało się to nieprawdą.

Jeszcze o panspermii

Pomostem między poszukiwaniem życia w Kosmosie i powstaniem życia na Ziemi jest panspermia. Według tej teorii życie oparte o DNA jest na tyle unikalnym zjawiskiem, że nie może powstawać ot tak po prostu, z prawdopodobieństwem statystycznym, po spełnieniu warunków fizycznych. Życie powstało jeden jedyny raz, gdzieś w głębi Kosmosu i następnie, korzystając z kosmicznych środków lokomocji (np. komety, meteoryty) rozpropagowało się w postaci bakterii lub przetrwalników na inne układy gwiezdne. Tam zaś, korzystając z wbudowanego już mechanizmu ewolucji mogło się dalej rozwijać. Teoria jest ciekawa, bo implikuje rozwój bardzo zróżnicowanych ekosystemów w zależności od panujących na danej planecie warunków. Prekursorem panspermii jest grecki filozof Anaksagoras. Podobne hipotezy wysuwali XIX i XX-wieczni uczeni: J.J. Berzelius w 1834 r., W. Thomson (późniejszy lord Kelvin) w 1871 r. i Svante Arrhenius w 1908 r. Arrhenius głosił, że mikroorganizmy mogły być przenoszone wskutek ciśnienia światła – tzw. radiopanspermia. O ciśnieniu światła pisał onegdaj Lucas Bergowsky.

Jako bonus, tu jest link do artykułu w NewScientist o niesporczakach i ich niebywałej odporności na ekstremalne warunki zewnętrzne jak promieniowanie, próżnia, temperatura: https://www.newscientist.com/article/2412569-we-finally-know-how-tardigrades-can-survive-extreme-conditions/

Ryc. 3. Niesporczak pod mikroskopem. Niesporczaki to mikroskopijne stworzenia żyjące na Ziemi w różnorodnych środowiskach, potrafiące przetrwać w warunkach próżni kosmicznej. Zdjęcie: Philippe Garcelon

Cegiełki życia

Poszukiwanie życia we Wszechświecie odbywa się zarówno w skali makro (egzoplanety) jak i mikro (cząsteczki). Zaawansowane badania spektroskopowe pozwoliły odkryć w obiektach pozaziemskich (chmury molekularne, protogwiazdy, komety, powierzchnia innych planet) cząsteczki organiczne: glikol aldehyd, cyjanoacetylen, acetonitryl, aminy oraz związki aromatyczne, w tym benzen. Rozpoczęto też bezpośrednie badania materii międzygwiezdnej, odkrywając (wspomnianą wcześniej) glicynę w komecie. 

Coś w rodzaju podsumowania

Badania Kosmosu są bardzo kosztowną zabawką i nie byłyby tak szczodrze finansowane przez państwa gdyby nie legenda życia pozaziemskiego. Na przykład Słońce, Wenus albo Księżyc, globy ewidentnie jałowe i martwe, przyciągają niewielkie fundusze. Na przeciwnym biegunie zainteresowania leży Mars, księżyce Jowisza i Saturna oraz pas planetoid. Poszukiwania przejawów życia idą tam pełną parą. Lepiej więc wydać pieniądze na poszukiwania Świętego Graala, przy okazji dokonując odkryć fizycznych, chemicznych czy technologicznych np. w energetyce i medycynie, niż marnować siły i środki na wyścig zbrojeń i prowadzenie bezsensownych wojen. Niech żyją „zielone ludziki”.

Co zawdzięczamy wirusom (6): nowy obraz ewolucji życia

Inne wpisy z tej serii:
Co zawdzięczamy wirusom (1): kilka pytań fundamentalnych
Co zawdzięczamy wirusom (2): bakteriofagi, czyli wielopoziomowa gra strategiczna
Co zawdzięczamy wirusom (3): podstępni włamywacze, czyli wirusy w stylu retro
Co zawdzięczamy wirusom (4): dygresja o naszym genomie i ukrytych w nim wirusach
Co zawdzięczamy wirusom (5): nie ma tego złego, co by na dobre nie wyszło

Jeszcze raz: czym są wirusy?

Badania ostatnich kilkudziesięciu lat, zwłaszcza wskutek postępu, jaki się dokonał  w genetyce i biologii molekularnej, gruntownie zmieniły naszą wiedzę o wirusach (zresztą podobnie jak o organizmach komórkowych). Dość powiedzieć, że o ile pół wieku temu wirusy dzielono umownie na dwie rodziny, dziś klasyfikacja ICTV (Międzynarodowego Komitetu Taksonomii Wirusów) wyróżnia 6 domen, 10 królestw, 72 rzędy i 264 rodziny (nie wspominając o wielu wirusach o niepewnym stanowisku systematycznym), przy czym liczby te rosną dosłownie z miesiąca na miesiąc i jest jasne, że wirusy dotąd zbadane i opisane stanowią tylko ułamek ich rzeczywistej różnorodności.

Badania nad genomiką porównawczą wirusów i nad ich związkami z poszczególnymi grupami organizmów komórkowych rzuciły wreszcie trochę światła na zagadkę pochodzenia wirusów. Opisane w poprzedniej części cyklu innowacje ewolucyjne, które zawdzięczamy wirusom, bledną wobec hipotez, wg których np. DNA i mechanizmy jego replikacji zostały „wynalezione” przez wirusy w czasach, gdy życie komórkowe stawiało pierwsze kroki i było wciąż oparte na RNA jako nośniku informacji.1 Wirusy mogły także odegrać znaczącą rolę w ewolucji eukariontów, uczestnicząc w procesach, które doprowadziły do utworzenia jądra komórkowego. Są to koncepcje spekulatywne, ale traktowane poważnie.

W odróżnieniu od organizmów komórkowych wirusy nie mają uniwersalnego zestawu genów/białek, których homologi (formy sprowadzalne do wspólnego przodka) występowałyby we wszystkich liniach ewolucyjnych. Białka tworzące kapsydy wirusów wyewoluowały niezależnie co najmniej dwa razy, a między różnymi liniami wirusów często zachodziła wymiana poszczególnych modułów genomu, dlatego ich genealogia niekoniecznie układa się w eleganckie drzewo rodowe, ale miejscami przypomina splątany krzak. Znaczna część genów wirusowych nie ma w ogóle odpowiedników wśród organizmów komórkowych. Jeśli wirusy są reliktami świata starszego niż LUCA (ostatni wspólny przodek współczesnych organizmów komórkowych), to mogą przechowywać zakonserwowaną genetycznie informację o wczesnych odgałęzieniach „drzewa życia”, które nie pozostawiły po sobie komórkowych potomków.

Wirusy olbrzymie

Dwadzieścia lat temu (w roku 2003) opisano pierwszego z wirusów-gigantów, zaliczanych obecnie do klasy Megaviricetes. Wraz z dwiema innymi grupami (do których należy np. ASFV, czyli wirus afrykańskiego pomoru świń, oraz cała rodzina wirusów ospy) tworzą one typ Nucleocytoviricota, czyli wirusów olbrzymich w szerszym sensie. Tym gigantem był Mimivirus, pasożytujący na pełzakach Acanthamoeba polyphaga. Kapsyd mimiwirusa ma średnicę ok. 0,5 μm, a wraz z otaczającymi go białkowymi włókienkami – 0,75 μm. Oznacza to, że jest on widoczny pod mikroskopem optycznym. Z tego powodu, choć mimiwirusy obserwowano już we wczesnych latach dziewięćdziesiątych XX w., przez ponad dziesięć lat lat brano je omyłkowo za bakterie.

Mimiwirusy są nie tylko duże, ale i skomplikowane. Mają genomy o długości ponad miliona par zasad, zawierający około tysiąca genów (a nawet ok. 10% DNA „śmieciowego”, co wśród wirusów jest ewenementem). Niektóre z tych genów zawierają introny i są poddawane splicingowi, jak typowe geny eukariontów. Po co wirusowi tak ogromna liczba genów? Oprócz genów normalnie występujących u wirusów (kodujących białka strukturalne i kilka enzymów, bez których wirus nie mógłby się powielać) mimiwirus zawiera też mnóstwo takich, których spodziewano by się wyłącznie u organizmów komórkowych. Kodują one np. swoiste enzymy katalizujące wiązanie poszczególnych aminokwasów z transportowym RNA (syntazy aminoacylo-tRNA), czynniki translacyjne, własną unikatową rodzinę cytochromów P450 (jedną z ich licznych funkcji jest unieszkodliwianie obcych toksyn), białka odpowiedzialne za metabolizm aminokwasów, lipidów i polisacharydów, syntezę nukleotydów czy naprawę DNA. Są tam także geny niekodujące, służące do produkcji tRNA. Funkcja większości genów mimiwirusów pozostaje nieznana i być może jeszcze nas zaskoczy.

Oznacza to, że mimiwirus nie zdaje się na to, co znajdzie u gospodarza, ale włamuje się z całą ciężarówką własnych narzędzi i zakłada fabrykę swoich kopii, funkcjonującą jak organellum komórki żywicielskiej. Ponieważ taką fabrykę mogą wziąć na cel wirofagi (wirusy pasożytujące na wirusach olbrzymich), mimiwirus posiada też zapisane w DNA środki obrony przed wirofagami. Z punktu widzenia koncepcji wirocelu, o której wspominałem na początku tego cyklu, wewnątrzkomórkowe stadium życia mimiwirusa trudno określić inaczej niż jako organizm – i to dość skomplikowany.

Ryc. 1.

Mimivirus wyglądał początkowo na wybryk natury, ale poszukiwania innych wirusów tego typu szybko doprowadziły do podobnych odkryć. Obecnie (1 września 2023 r.) Nucleocytoviricota dzielone są roboczo na 11 rodzin i 54 rodzaje, ale jest oczywiste, że rzeczywista liczba jednostek taksonomicznych w randze rodzin powinna raczej iść w dziesiątki, a rodzajów –  w setki (i dotyczy to wirusów już zaobserwowanych, a nie tych jeszcze nieodkrytych).2 Nie wszyskie są naprawdę olbrzymie, ale rekordziści budzą respekt: mogą mieć kapsydy o długości 1,5 μm (czyli niewiele mniejsze niż komórka bakterii z modelowego gatunku Escherichia coli) albo genomy o długości ok. 2,5 mln par zasad. Zestaw genów odkryty  mimiwirusa nie jest dziwacznym wyjątkiem, ale powszechną cechą wirusów olbrzymich.

O ile początkowo znajdowano gigantyczne wirusy w dość specyficznych środowiskach, obecnie wydaje się, że można na nie natrafić właściwie wszędzie. Wskazują na to badania metagenomowe, identyfikujące ich DNA w rozmaitych środowiskach. Aby potwierdzić ich obecność za pomocą danych morfologicznych, ostatnio zespół mikrobiologów zbadał pod transmisyjnym mikroskopem elektronowym próbki gleby leśnej pobranej z amerykańskiej stacji badań ekologicznych Harvard Forest w stanie Massachussetts, należącej do Uniwersytetu Harvarda. Poszukiwano tworów, które mogłyby być wirionami wirusów olbrzymich. Znaleziono ich setki o najrozmaitszych kształtach, w tym wiele „klasycznych” kapsydów dwudziestościennych, albo pozbawionych dodatków, albo otoczonych włókienkami (jak u mimiwirusa), zaopatrzonych w symetrycznie rozłożone wypustki lub rurkowate ogonki (jak u rodzaju Tupanvirus). Niektóre mają kształt owalny (jak u rodzajów Pandoravirus czy Pithovirus). Sam wygląd nie stanowi niezbitego dowodu, że mamy do czynienia z wirusami, potrzebne są zatem dalsze badania, ale właściwie trudno sobie wyobrazić, czym innym mogłyby być te wirusopodobne cząstki.3

Ryc. 2.

Wirusy olbrzymie z rzędu Algavirales występują szczególnie obficie w środowiskach wodnych, gdzie infekują planktoniczne eukarionty należące do rozmaitych gałęzi drzewa życia. Jednym z nich jest Chlorovirus, którego liczne gatunki pasożytują na jednokomórkowych zielenicach. Jest go tyle, że dla niektórych orzęsków (np. pantofelków, czyli Paramecium) stanowi istotny składnik pokarmowy. Orzęski z rodzaju Halteria są jedynymi znanymi eukariontami, które potrafią przeżyć na diecie złożonej z samych chlorowirusów. W warunkach laboratoryjnych jeden osobnik halterii konsumuje od 10 tys. do miliona wirusów dziennie. Szacuje się, że w niewielkim stawie populacja halterii pożera 1014–1016 (od stu bilionów do stu bilardów) wirusów olbrzymich na dobę, przy czym sama stanowi pokarm dla zooplanktonu. Ten łańcuch pokarmowy  ma zauważalny wpływ na obieg węgla, azotu i fosforu w tym ekosystemie.

Epilog  z morałem

Wirusy nie mają własnego stadium komórkowego, choć można powiedzieć, że są „porywaczami ciał”, uprowadzającymi i wykorzystującymi do własnych celów fenotypy organizmów komórkowych. Nie produkują rybosomów (które są wspólnym dziedzictwem wszystkich potonków LUCA), a zatem nie syntetyzują białek samodzielnie. Do przenoszenia swojego materiału genetycznego używają kapsydów, których białka tworzy gospodarz na podstawie specyfikacji dostarczonej przez wirusa. Czasem pożyczają geny gospodarza, ale częściej same są źródłem innowacji genetycznych i przenoszą do świata organizmów komórkowych geny i białka wcześniej w nim nieznane. Gdziekolwiek występuje życie komórkowe, tam można znaleźć także wirusy, nie ma więc przed nimi ucieczki. Na szczęście jest to naturalny stan rzeczy od około czterech miliardów lat, więc poza epizodami drastycznego naruszenia równowagi wirus–gospodarz koegzystujemy sobie dość harmonijnie.

Tradycyjne wyobrażenie o wirusach jako prymitywnych „czynnikach zakaźnych, których nie zatrzymują porcelanowe sączki bakteryjne”, należących bardziej do świata chemii niż biologii4, jest dziś kompletnie anachroniczne. Wirusy są tak ważnymi uczestnikami życia na Ziemi i jego ewolucji, że akademickie pytanie, czy same wirusy są żywe, w ogóle przestaje mieć znaczenie. I to także zawdzięczamy wirusom: zrozumienie, że definicja życia jest nieostra i że na jego ewolucję trzeba patrzeć z szerokiej perspektywy, w której historia wirusów nie jest przypisem, ale jednym z centralnych rozdziałów.

Przypisy

1) Wirusy mogą oczywiście używać zarówno RNA, jak i DNA w wersji jednoniciowej lub dwuniciowej, ale odwrotna transkrypcja, czyli przepisywanie informacji genetycznej z RNA na  DNA jest specjalnością retrowirusów (w szerokim sensie).
2) Patrz https://ictv.global/taxonomy (domena Varidnaviria, królestwo Bamfordvirae, typ Nucleocytoviricota).
3) Artykuł opisujący te obserwacja dostępny jest w postaci preprintu dopiero oczekującego na recenzje i publikacje: https://www.biorxiv.org/content/10.1101/2023.06.30.546935v1.full
4) Wendell M. Stanley otrzymał w roku 1946 r. nagrodę Nobla nie z „fizjologii i medycyny”, ale z chemii za „wyizolowanie wirusa mozaiki tytoniu w czystej formie krystalicznej”.

Lektura dodatkowa

Embarras de richesse, czyli problemy z klasyfikacją wirusów i potrzeba reformy: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001922
Czego dowiadujemy się o ewolucji od wirusów: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755228/
Wirusy olbrzymie: https://www.sciencenews.org/article/meet-giants-among-viruses
Wirusy olbrzymie a eukarionty i jądro komórkowe: https://www.sciencedirect.com/science/article/pii/S1369527416300017, https://www.sciencedirect.com/science/article/pii/S0168170220310753
Wirusożerne orzęski: https://www.sciencenews.org/article/first-microbes-eat-virus-virovory-algae

Opisy ilustracji

Ryc. 1. Rekonstrukcja drzewa filogenetycznego wybranych wirusów olbrzymich (Nucleocytoviricota). Według obecnego stanu wiedzy drzewo to jest o wiele większe i bardziej skomplikowane. Jest ono zakorzenione w czasach poprzedzająych pojawienie się ostatniego wspólnego przodka organizmów komórkowych (LUCA). Źródło: Colson et al. 2011 (licencja CC BY 3.0).
Ryc. 2. Niektóre z typów morfologicznych potencjalnych wirionów wirusów olbrzymich z Harvard Forest. Źródło: Fischer et al. 2023 (bioRχiv preprint, licencja CC BY-NC-ND 4.0).