Pozostałe wpisy z tej serii:
Fantastyczne zwierzęta i jak je znaleźć (1): Prolog
Fantastyczne zwierzęta i jak je znaleźć (3): Myxozoa, czyli ewolucja na biegu wstecznym
Fantastyczne zwierzęta i jak je znaleźć (4): Eksplozja kambryjska, której właściwie nie było
Fantastyczne zwierzęta i jak je znaleźć (5): Ediakar, czyli świat prototypów
Patrz też: Płaskowce, czyli zalety prostoty (autor: Łukasz Sobala)
Jak już wiemy, po ustaleniu, że trzy z pięciu głównych gałęzi rodowych zwierząt (Bilateria, parzydełkowce i płaskowce) tworzą jeden klad (czyli grupę wywodzącą się od wspólnego przodka i obejmującą wszystkich jego potomków), badacze pozostali z ostatnią zagadką: gdzie na drzewie życia lokują się gąbki i żebropławy? Odpowiedź nie jest bez znaczenia, gdy zastanawiamy się na przykład, jak mogły wyglądać organizmy będące ostatnimi wspólnymi przodkami wszystkich zwierząt. Czy były osiadłe i żywiły się, filtrując wodę, czy raczej poruszały się aktywnie i polowały, chwytając plankton? Czy miały jakieś narządy zmysłów i przynajmniej zaczątki układu nerwowego?
Paleontologia praktycznie milczy na ten temat. O ile z ediakaru (ostatniego okresu geologicznego poprzedzającego kambr) znane są skamieniałości dość liczne, choć wcale niełatwe do zinterpretowania, to z okresów wcześniejszych nie mamy właściwie nic, co byłoby rozpoznawalne jako niewątpliwe skamieniałości zwierząt. Trudno się dziwić, bo jeśli były one drobne, a ich ciała były delikatne, to szanse na fosylizację miały niewielkie. Filogenomika, czyli analiza genomów pod kątem ustalania pokrewieństwa, także nie dawała dotąd jasnej odpowiedzi. Zależnie od tego, które cechy genetyczne bierzemy pod uwagę, wyniki wskazują raz na gąbki, raz na żebropławy jako na grupę, która najdawniej oddzieliła się od wspólnego pnia.1
W badaniu opublikowanym w Nature 17 maja 2023 r. (głównymi autorami są Darrin T. Schultz z Uniwersytetu Wiedeńskiego i Daniel S. Rokhsar z Uniwersytetu Kalifornijskiego w Berkeley)2 zastosowano nowatorskie podejście. Zamiast przyglądać się po raz kolejny sekwencjom DNA poszczególnych genów i tradycyjnie otrzymywać wyniki obarczone dużą niepewnością, a przez to kontrowersyjne, skupiono się na zachowawczych wzorcach syntenii, czyli współwystępowania całych grup genów – od kilku do dwudziestu kilku – na jednym chromosomie. W typowych przypadkach dobór naturalny skutecznie zapobiega przemieszczaniu się dużych fragmentów DNA między chromosomami, ponieważ taka translokacja rzadko bywa korzystna, a jej częstym skutkiem jest bezpłodność osobników heterozygotycznych (dziedziczących chromosomy z translokacją po jednym z rodziców). Oszacowano, że w trakcie ewolucji zwierząt i ich bliskich krewnych przemieszczeniom międzychromosomowym ulega średnio 1% genów na ok. 40 mln lat. Dlatego jeśli nawet sekwencje DNA w obrębie genów ewoluują stosunkowo szybko, to geny przeważnie trzymają się razem na tym samym chromosomie przez setki milionów lat.
Może się jednak zdarzyć, że dwa chromosomy dokonają fuzji, czyli połączą się w jeden, a ulokowane na nich geny ulegną po pewnym czasie „przetasowaniu” na nowym, dłuższym chromosomie. Taka „fuzja z przetasowaniem” staje się nieodwracalna, bo wymieszanie genów sprawia, że prawdopodobieństwo zajścia ciągu zmian przywracającego stan początkowy spada praktycznie do zera. Potomkowie organizmu, u którego wystąpiła taka innowacja, dziedziczą ją jako nowo utworzony wzorzec syntenii. Jeśli podzielą się na kilka linii ewolucyjnych, to każda z nich odziedziczy ten wzorzec, dowodzący wspólnego pochodzenia.
Porównano zatem geny ortologiczne (czyli o wspólnym pochodzeniu ewolucyjnym) u różnych gatunków zwierząt, reprezentujących wszystkie główne gałęzie drzewa rodowego, i przeanalizowano liczne grupy syntenii. Okazało się, że siedem takich grup występuje u wszystkich zwierząt prócz żebropławów, podczas gdy ani jedna nie występuje u wszystkich zwierząt prócz gąbek. Wobec tego nie gąbki, ale żebropławy wyróżniają się na tle całego królestwa zwierząt. Nie rozstrzygało to jednak kwestii, czy nietypowy skład chromosomów żebropławów jest cechą pierwotną, czy może innowacją. Mogło się przecież zdarzyć, że to wszystkie inne zwierzęta zachowały wzorce syntenii występujące u wspólnego przodka, a u żebropławów zaszły jakieś odrębne przegrupowania chromosomów. Co się robi w takich przypadkach, żeby ustalić, który wzorzec jest starszy? Trzeba się przyjrzeć tzw. grupom zewnętrznym (outgroups), które oddzieliły się od przodków zwierząt, zanim same zwierzęta zaczęły się różnicować. Wzorzec, który wykazuje liczne zbieżności z odpowiednikami na zewnątrz badanej grupy, musi być starszy.
Gdzie szukać takich bliskich kuzynów zwierząt, którzy sami nie są zwierzętami? To na szczęście nie sprawia trudności, bo zewnętrzne pokrewieństwa zwierząt ustalono już jakiś czas temu. W obrębie eukariontów (istot żywych posiadających jądra komórkowe) zwierzęta należą do supergrupy Amorphea. Obejmuje ona dwie główne gałęzie (obok kilku małych, które tu zignorujemy): Amoebozoa i Opisthokonta. Do tej pierwszej należy jedna z moich ulubionych grup organizmów, śluzowce (Myxogastria), ale także np. znany wszystkim z podręczników biologii pełzak odmieniec (Amoeba proteus). Druga gałąź (Opisthokonta) obejmuje dwa ogromne klady, które odniosły nadzwyczajny sukces ewolucyjny i tradycyjnie wynoszone są do rangi królestw: grzyby i zwierzęta. Każdy z nich otoczony jest wianuszkiem grup satelitarnych – drobniejszych gałązek wyrastających blisko podstawy potężnych i silnie rozgałęzionych konarów drzewa życia.
Linie rodowe prowadzące do zwierząt i grzybów rozdzieliły się ponad miliard lat temu. Linia zwierzęca nazywana jest Holozoa i obejmuje wszystkie organizmy bliżej spokrewnione ze zwierzętami niż z grzybami. Zanim powstały zwierzęta właściwe, od ich przodków odłączyło się kilka mniejszych grup, których potomstwo nadal zamieszkuje Ziemię, choć oprócz specjalistów mało kto o nich słyszał. O jednej z tych grup już wspomniałem: są to wiciowce kołnierzykowe (Choanoflagellata), najbliżsi kuzyni zwierząt. Nieco dalszymi krewnymi są stosunkowo ubogie w gatunki klady Filasterea i Ichthyosporea. Dzieli je od nas ponad 800 mln lat niezależnej ewolucji, ale należące do nich organizmy odgrywają ważną rolę w badaniach nad pochodzeniem zwierząt.3
Do porównania ze zwierzętami wybrano zsekwencjonowane genomy trzech jednokomórkowych gatunków: wiciowca kołnierzykowatego Salpingoeca rosetta, amebowatej Capsaspora owczarzaki z grupy Filasterea oraz Creolimax fragrantissima, przedstawiciela Ichthyosporea. I co się okazało? Żebropławy odziedziczyły w dużym stopniu wzorce syntenii występujące u przedstawicieli grup zewnętrznych, tymczasem wzorce syntenii występujące u pozostałych zwierząt, a nieobecne u żebropławów, są zgodne ze scenariuszem nieodwracalnych „fuzji z przetasowaniem” chromosomów odziedziczonych po dalekich przodkach. Innymi słowy, żebropławy zachowały stan pierwotny, a u gąbek, zwierząt dwubocznie symetrycznych, płaskowców i parzydełkowców występują wspólne innowacje, które nie mogły powstać niezależnie. Te gałęzie tworzą grupę wywodzącą się od wspólnego przodka, który nie był przodkiem żebropławów.4 Dla kladu obejmujące te cztery gałęzie (gąbki plus wszystkie Parahoxozoa) autorzy proponują nazwę Myriazoa od greckiego słowa mūríos (oznaczającego ‘dziesięć tysięcy’ albo nieokreśloną wielką liczbę, „miriadę”). Nazwa zawiera aluzję do ogromnej liczebności i różnorodności gatunków, do których się odnosi.
Po raz kolejny okazuje się, że podobieństwo morfologiczne albo jego brak to kwestia mało istotna w ustalaniu rzeczywistego pokrewieństwa. Wygląd bywa zwodniczy. Anatomicznie żebropławy przypominają parzydełkowce tak bardzo, że kiedyś były z nimi łączone w jeden typ jamochłonów (Coelenterata). Taka klasyfikacja od kilkudziesięciu lat jest nieaktualna. Stułbia, meduza czy ukwiał są bliżej spokrewnione choćby z człowiekiem niż z dowolnym żebropławem. Trzeba przy tym zauważyć, że istnieją żebropławy denne, używające gardzieli (zamiast charakterystycznych dla większości żebropławów ośmiu żeberek zaopatrzonych w wici) do lokomocji i do trzymania się podłoża. Są one spłaszczone i odznaczają się dwuboczną symetrią (niezależnie od Bilateria). Nie przypominają parzydełkowców, a za to można je pomylić ze ślimakami nagoskrzelnymi lub płazińcami. To podobieństwo też jest wtórne i o niczym istotnym nie świadczy. Z drugiej jednak strony istnieją także parzydełkowce, które w ogóle nie przypominają parzydełkowców, ale o nich będzie jeden z kolejnych wpisów.
Na zakończenie obalmy mity, które zaczęły krążyć po Internecie w związku z publikacją wspomnianych badań. Na popularnych portalach informacyjnych pojawiły się nagłówki w następującym stylu: „Naukowcy odkryli najstarsze wciąż żyjące zwierzę”. Nie, to nieprawda. Ponieważ żebropławy i Myriazoa są siostrzanymi liniami ewolucyjnymi, żadna z nich nie jest starsza od drugiej. Wywodzą się od wspólnego przodka, o którego cechach anatomicznych nie wiemy praktycznie nic. Konserwatywny skład chromosomów żebropławów nie dowodzi, że także ich wygląd i tryb życia są równie stare. Najdawniejsze skamieniałości jednoznacznie rozpoznawalne jako żebropławy pochodzą z kambryjskich łupków w Chinach (fauna Chengjiang), liczą sobie ok. 520 mln lat i znacznie różnią się od współczesnych. Ewidentnie pół miliarda lat temu żebropławy były grupą bardzo różnorodną, przystosowaną do różnych warunków życia, Miały za sobą sto lub dwieście milionów lat ewolucji na razie nieudokumentowanej przez skamieniałości.
Przypisy
1) Przykład sporu między „gąbkowcami” a „żebropławcami” (Pisani et al. 2015): https://www.pnas.org/doi/full/10.1073/pnas.1518127112.
2) Oryginalny artykuł (Schultz et al. 2023): https://www.nature.com/articles/s41586-023-05936-6. Skrótowe omówienie wyników: https://www.nature.com/articles/d41586-023-00807-6. Informacja na stronach Uniwersytetu Kalifornijskiego w Berkeley: https://vcresearch.berkeley.edu/news/what-did-earliest-animals-look.
3) W drugim wydaniu Opowieści przodka (The Ancestor’s Tale) z roku 2016, na którym oparty jest przekład polski Agnieszki Sobolewskiej (2018), Richard Dawkins i Yan Wong poświęcają „spotkanie 32” wiciowcom kołnierzykowym, „spotkanie 33” grupie Filasterea i „spotkanie 34” Ichthyosporea (używając dla nich nazwy „grupa DRIPS”). Pozycja filogenetyczna Filasterea nie była jeszcze znana, gdy ukazało się pierwsze wydanie, dodano je zatem w drugim.
4) Dawkins i Wang (2016) przyjęli roboczo, że od linii ewolucyjnej prowadzącej do Bilateria oddzielały się kolejno gąbki, płaskowce, żebropławy i parzydełkowce (w tej kolejności), zastrzegając, że jest to założenie prowizoryczne. Obecny stan wiedzy (po zaledwie siedmiu latach) wymusiłby oczywiście zmianę kolejności i treści odnośnych rozdziałów („spotkań”) w kolejnym wydaniu książki.