Gwiazda Przybylskiego zaskakuje − a artykuł znów boli…

Wielu z was zapewne przywitały wczoraj na różnych portalach wyskakujące okienka z dramatycznym apelem do rządu. O ile dobrze zrozumiałem istotę problemu, chodzi o to, iż media chciałyby, aby wyszukiwarki w rodzaju Google podające linki do publikowanych tam artykułów dzieliły się w jakiejś formie gromadzonymi w ten sposób zyskami. Nie wiem, czy zrozumiałem to dobrze, ale właśnie w ten sposób natrafiłem na tekst pt. “Gwiazda Przybylskiego zaskakuje. Ma związek z zaawansowanymi obcymi cywilizacjami?”

Pierwotnie chciałem opublikować jako pierwszy inny tekst, jednak to, co przeczytałem, znów wymaga rozwinięcia i poprawienia oczywistych błędów, które wynikają… nie bardzo rozumiem skąd; chcę głęboko wierzyć, że nie z niechlujstwa, ale z urlopu korektora. No to zaczynajmy, bo temat jest naprawdę ciekawy, a autorka wspomniała w pozytywnym kontekście wielkiego Carla Sagana.

“W ostatnich latach astronomowie zauważyli, że niektóre gwiazdy zachowują się w nietypowy sposób. Jednym z najbardziej tajemniczych obiektów w kosmosie jest gwiazda Przybylskiego, która zaskakuje badaczy swoją unikalną strukturą chemiczną. Według IFLScience, to gwiezdne ciało prezentuje zestaw elementów, których obecność jest trudna do wyjaśnienia znanymi prawami natury.”

Owszem − w miarę rozwoju nauki i technik badawczych zauważono, że istnieją obiekty, które w jakiś sposób wymykają się naszym dotychczasowym teoriom. Jednym z nich jest właśnie wspomniana gwiazda. W tym akapicie właściwie jedyne, co mi przeszkadza, to kalka językowa: lepiej byłoby napisać “pierwiastków” zamiast “elementów” (angielskie elements). Faktycznie: skład chemiczny tej gwiazdy odbiega od spodziewanego, ale co to za gwiazda i co z nią nie tak? Czytamy dalej:

“Odkryta w 1961 r, przez polsko-australijskiego astronoma Antoniego Przybylskiego, gwiazda ta od samego początku wyróżniała się na tle innych. Przede wszystkim, zaskoczyła naukowców nietypowym składem chemicznym swojej atmosfery. Według Jasona Wrighta, profesora z Department of Astronomy and Astrophysics w Eberly College of Science, analiza światła gwiazdy pokazała obecność wielu rzadkich elementów ziemi, takich jak krzem, chrom, stront i europ.”

Początek jak najbardziej się zgadza, aczkolwiek nie ma szans, abyście kiedykolwiek mogli oglądać tę gwiazdę, jeśli nigdy nie przekroczyliście równika lub nie urodziliście się na półkuli południowej. Znajduje się ona w gwiazdozbiorze Centaura, który nie jest widoczny na naszych szerokościach geograficznych. Jak pewnie dobrze wiecie z tekstów na naszym portalu, potrafimy wykrywać obecność pierwiastków chemicznych w świetle emitowanym przez różne obiekty w różnych procesach. Może być to pożar odległego magazynu, a może być to równie dobrze światło emitowane przez gwiazdy. Fotony będące kwantami światła, które widzimy, mogą napotkać na atom danego pierwiastka i zostać pochłonięte przez elektron. Wówczas w spektrum powstanie dziura odpowiadająca długości fali pochłoniętego światła. Ponieważ jesteśmy na poziomie mechaniki kwantowej, to te długości są ściśle określone i związane z energią danego fotonu. Logicznym wnioskiem jest więc to, że jeśli przepuścimy światło przez gaz składający się z różnych pierwiastków, to będziemy w stanie na podstawie pochłoniętego przez nie światła stwierdzić ich obecność. Ponieważ robiliśmy to wielokrotnie wcześniej, to wiemy czego szukać. Nic dziwnego, że robimy to ze światłem emitowanym przez gwiazdy.

Podobnie postąpił w 1961 r. A. Przybylski z odkrytą przez siebie gwiazdą i bardzo się zdziwił, gdyż to, co widział, wyraźnie nie pasowało do tego, co obserwował do tej pory. Gwiazda nosząca numer katalogowy HD 101065 nie różni się w szczególny sposób od innych w swojej klasie, jeśli chodzi o masę czy prędkość rotacji. To, co ją wyróżnia, to widmo emitowanego światła. Przybylskiego zdumiała wspominana “obecność wielu rzadkich elementów ziemi”. Prawdę mówiąc, to nie aż tak jego to zdumiało, jak mnie zabolało.

Pierwszy raz muszę się naprawdę przyczepić: albo piszemy po polsku, albo po angielsku. “Rare earth elements” to po polsku “metale ziem rzadkich”. Jest to grupa, do której zaliczamy skand, itr i wszystkie lantanowce. A więc na europ się zgadzam, ale krzem i chrom? Domyślam się, skąd ten błąd: metale ziem rzadkich po raz pierwszy odkryto w minerałach zawierających wspomniane pierwiastki, ale podkreślam raz jeszcze: stront, chrom i krzem nie zaliczają się do tej rodziny, choć Przybylski faktycznie je w spektrum światła emitowanego przez tę gwiazdę wypatrzył. Dojrzał tam również wiele innych pierwiastków z rodziny metali ziem rzadkich, jak np. neodym, ale też wiele innych, takich jak tor, a nawet uran. I to jest dziwne. No ale czytajmy dalej:

“Co więcej, gwiazda Przybylskiego zawiera także elementy, takie jak kaliforniam, aktyna, berkelium, czy protastyna, które teoretycznie nie powinny się tam znaleźć ze względu na krótki okres półtrwania. Jest to jednak trudne do potwierdzenia, ponieważ nie występują w naturze.”

I tu mnie zaczęło boleć: te pierwiastki nie noszą takich nazw w żadnym ze znanych mi języków (poza berkelium które kojarzę z łaciny). Przybylski był bardzo zdziwiony samą obecnością toru czy uranu, a co dopiero pierwiastków, których jądra nie dość, że są cięższe, to istnieją w czasie liczonym w tygodniach i miesiącach. Po kolei: nie wiem, skąd Autorka wzięła te nazwy, ale podejrzewam, że chodzi o kaliforn, aktyn, berkel i protaktyn. Ich obecność w składzie gwiazdy jest niespodziewana. Gwiazdy czerpią energię z procesu znanego jako fuzja termonuklearna, w którym lżejsze jądra łączą się pod wpływem ekstremalnej temperatury i ciśnienia w cięższe, emitując przy tym energię. Proces ten nie może działać w nieskończoność. Jakiekolwiek próby łączenia jąder cięższych niż jądra żelaza wymagają dostarczenia energii z zewnątrz zamiast jej emitowania. Obecność pierwiastków cięższych niż żelazo w składach gwiazd da się wyjaśnić składem obłoków materii, z których powstają, i innymi procesami. Jednak obecność zauważalnych ilości pierwiastków, których czas półrozpadu mieści się w skali tysięcy lat, budzi poważne wątpliwości.

Nie znajdujemy ich na naszej planecie, gdyż jeśli jakiekolwiek ich jądra znalazły się tutaj w czasie jej formowania, to do naszych czasów zdążyły się całkowicie rozpaść do postaci stabilnych jąder innych pierwiastków. Jeśli nie znajdujemy ich tutaj, to nie powinno być ich też tam. Prawa fizyki są wszędzie takie same. Tymczasem, jeśli wierzyć obserwacjom, pierwiastki te tam są, a przynajmniej były jeszcze 356 lat temu, gdyż tyle lat świetlnych wynosi odległość pomiędzy nami. W tekście pt. Końca nie widać… wspomniałem o tym, że potrafimy sztucznie produkować znacznie cięższe jądra w warunkach ziemskich. Jeśli my potrafimy, to dlaczego nie gwiazda, która ma możliwość wytworzenia warunków znacznie bardziej ekstremalnych? Być może w jej wnętrzu zachodzi jakiś nieznany nam proces, który powoduje ich ciągłe powstawanie? Czytajmy dalej:

“Naukowcy snują różne teorie próbujące wyjaśnić, skąd w gwieździe mogły się wziąć te nietypowe elementy. Jedna z hipotez sugeruje, że może to być efekt oddziaływania z pobliską gwiazdą neutronową. Inna, opisana w artykule z 2017 r. na arXiv, sugeruje, że obserwowane elementy mogą być produktem rozpadu nieodkrytych ciężkich elementów z hipotetycznej “wyspy stabilności”. Ta druga hipoteza otwiera fascynujące perspektywy na przyszłe badania, które mogłyby odkryć nowe aspekty dotyczące materii i ewolucji wszechświata.”

O tak, w snuciu teorii ludzie nauki są mistrzami; w końcu zżera nas ciekawość związana z tym, jak działa Wszechświat. Szkoda, że dziennikarze nie dbają o to, aby choćby cytować je w miarę dokładnie. O co chodzi z oddziaływaniem z pobliską gwiazdą neutronową? Obfitość pierwiastków cięższych od żelaza we Wszechświecie jest większa niż spodziewana, gdyby przyjąć, że jedynym procesem, w którym powstają, są końcowe sekundy życia gwiazd i związane z tym różne typy supernowych. Gwiazd nie wybuchło do tej pory tyle, aby wyjaśnić obserwowaną ilość złota, uranu, tytanu itp. Rozwiązaniem tej zagadki wydają się zderzenia gwiazd neutronowych. W ich trakcie powstają jądra bogate w neutrony, które podczas serii szybkich rozpadów beta minus powodują powstanie cięższych pierwiastków. Pobliskie zdarzenie tego typu mogło wzbogacić gwiazdę Przybylskiego we wspomniane jądra, a nawet w znacznie cięższe z “wyspy stabilności”, o której również pisałem w cytowanym tekście. Istnieje hipotetyczna możliwości, iż pierwiastki z ósmego okresu (jeśli kiedykolwiek zostaną wytworzone) o odpowiednich tzw. “magicznych” liczbach protonów i neutronów będą charakteryzować się podwyższonym czasem życia rzędu nawet miesięcy (przewidywanym standardem dla tak ciężkich jąder są mikrosekundy). Istnieją też inne hipotezy:

“Zdaniem niektórych naukowców, w tym Carla Sagana, obecność tych nietypowych elementów mogłaby nawet świadczyć o działalności zaawansowanych cywilizacji pozaziemskich. Teoria ta zakłada, że inteligentne życie mogłoby celowo dodawać do gwiazd wyraźnie sztuczne elementy, aby przyciągnąć uwagę innych cywilizacji.

Choć hipoteza ingerencji obcych cywilizacji jest ekscytująca, większość badaczy przychyla się do bardziej naturalnych wyjaśnień. Niezależnie od ostatecznych odpowiedzi, tajemnica gwiazdy Przybylskiego pozostaje niezwykłym przypomnieniem o złożoności kosmosu, którego nieustannie uczymy się rozumieć. Potrzebne są kolejne badania, aby wyjaśnić te kosmiczne zagadki, ale jedno jest pewne – kosmos nie przestaje nas zadziwiać.”

No i mamy kosmitów! Nie żebym miał cokolwiek przeciwko takim hipotezom, zwłaszcza że Carl Sagan był naukowcem, dzięki któremu mały Lucas spojrzał na nocne niebo i poczuł nie strach przed głębią, ale chęć jej zrozumienia. Bez wątpienia pomysł, aby dodać do swojej gwiazdy dużą ilość superciężkich pierwiastków, by pełniła rolę charakterystycznej latarni, nie jest głupi. Podobne rzeczy robimy od lat, stosując charakterystyczne sygnały mające zwrócić uwagę odbiorcy. Gałęzie ułożone w kształt “SOS” widziane z powietrza od razu wskazują nam, że musiał je zostawić ktoś, komu koncepcja pisma i alfabetu Morse’a nie jest obca. Podobnym sygnałem byłaby dla istot obserwujących gwiazdy obecność w ich widmach pierwiastków, których gwiazda tego typu absolutnie nie mogłaby wytworzyć w procesie nieniszczącym wszystkiego w kręgu kilkunastu lat świetlnych. Nie jestem pewien, czy taki sposób zaznaczania swojej obecności byłby najlepszy dla cywilizacji zdolnej produkować ogromne ilości superciężkich pierwiastków, które następnie umieszcza w gwieździe tylko po to, aby zakomunikować swoje istnienie (przy założeniu, że patrzący są wystarczająco inteligentni i akurat będą patrzeć w tę stronę kosmosu). Są o wiele lepsze metody, jak na przykład opisana w powieści wspominanego Sagana pt. “Kontakt” transmisja konkretnych sygnałów radiowych budzących zainteresowanie.

Wracając jednak do samej Gwiazdy Przybylskiego i obcych cywilizacji: wyjaśnienie może się okazać, jak wspomniała Autorka, całkowicie naturalne. Obecność jąder cięższych niż uran w widmie nie jest pewna; z pewnością w widmie występują ślady technetu i prometu. Najtrwalszy z izotopów technetu ma czas półrozpadu rzędu milionów lat a prometu ok. 17 lat, więc z pewnością w samej gwieździe zachodzą procesy, które powodują ich stałe powstawanie. Jednak obecność kalifornu i innych znacznie cięższych pierwiastków jest wątpliwa. Dalsze obserwacje dostarczyły kolejnych danych, które wskazują na silne namagnetyzowanie samej gwiazdy, co w połączeniu z jej niską rotacją może zaburzać obserwowane widmo. Jak do tej pory żaden z zespołów badawczych nie potwierdził wniosków Przybylskiego co do zawartości superciężkich pierwiastków, choć wszyscy zauważyli, że widmo gwiazdy jest nietypowe. To wymaga jak zwykle dalszych badań i obserwacji.

Pytaniem, z którym chciałbym was zostawić, jest to, jaka jest jakość tekstów pozornie popularnonaukowych, których autorzy nie troszczą się nawet o poprawne tłumaczenie pomimo publikacji na “Poważnych Portalach”…

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem
.

Końca nie widać…

W rozmowie, którą prowadziłem ze znajomą z Twittera, padło pytanie o to, czy są jeszcze jakieś nieodkryte pierwiastki. Uważam, że odpowiedź “tak” stanowczo nie wyczerpuje tematu, więc jak zwykle zastanówmy się nad tym, co pamiętamy z lekcji chemii w szkole. Pewnie pamiętacie, że siódmy okres układu zawierał w sobie trzyliterowe symbole zaczynające się od “U”: pojawiał się tam symbol Uub a następnie Uut, Uuq, Uup, Uuh i tak dalej aż do Uuo. Kryły się pod nimi pierwiastki, których istnienia domyślaliśmy się z prawa okresowości, na którym opiera się układ okresowy.

Zacznijmy może od wyjaśnienia znaczenia samych symboli pierwiastków hipotetycznych. Zgodnie z nazewnictwem IUPAC (Międzynarodowej Unii Chemii Czystej i Stosowanej) symbol takiego pierwiastka jest zawsze trzyliterowy i pochodzi od połączenia pierwszych liter rdzeni liczbowych odpowiadających kolejnym cyfrom jego liczby atomowej, przy czym pierwsza litera takiego symbolu jest zawsze duża. Spójrzmy więc na ilustrację poniżej:

Jest to banalnie proste. W nazwie wystarczy połączyć trzy rdzenie. Spróbujmy więc odczytać symbol Unq według tej reguły. Un (1) nil (0) quad (4), czyli mowa o pierwiastku o liczbie atomowej 104, nazywanym według tej reguły unnilquad. Pod symbolem Uup kryje się wobec tego ununpent i tak dalej. Według tej reguły można konstruować kolejne nazwy i symbole hipotetycznych pierwiastków właściwie aż do Eee czyli ennenenu, mającego liczbę atomową 999, czyli dokładnie tyle protonów w jądrze. Tylko czy tworzenie takich symboli ma sens fizyczny, czy to tylko sztuka dla sztuki, gdyby ktoś chciał potrenować dykcję?

Stan wiedzy na dzień dzisiejszy jest taki, że możecie spokojnie zapomnieć o symbolach od Uub do Uuo. Obecnie układ okresowy zawiera 118 nazwanych pierwiastków; te o liczbach atomowych od 112 do 118 noszą kolejno nazwy: kopernik, nihon, flerow, moskow, liwermor, tenes i oganeson. Jeśli nie znacie tych nazw, to żaden wstyd − wszystkie odkryto po roku 2000. Nie wiem tylko, czy “odkryto” jest tu właściwym słowem. Wszystkie pierwiastki zawierające w jądrze więcej protonów niż ołów nie posiadają żadnych stabilnych izotopów. Ulegają rozpadowi radioaktywnemu z czasem półtrwania od miliardów lat (dzięki temu w naturze istnieją jądra takich pierwiastków jak tor czy uran) do milisekund. Jedyne jądra cięższe niż uran, jakie znaleźliśmy na naszej planecie, to śladowe ilości jąder neptunu i plutonu w rudach naturalnie występującego uranu. I to jest dziwne.

Jedyny proces rozpadu radioaktywnego, który zwiększa liczbę protonów jądrze, to rozpad beta minus, w którym jeden z neutronów przemienia się w proton. Uran nie rozpada się w ten sposób; wszystkie znane nam jego izotopy ulegają rozpadowi, emitując cząstkę alfa, tj. cząstkę składającą się z dwóch protonów i dwóch neutronów. Neptun i pluton mają więcej protonów w jądrze niż uran więc na pewno nie powstały w wyniku jego rozpadu. Najtrwalszy izotop neptunu to 237Np, którego czas połowicznego rozpadu to około 2 miliony lat; w przypadku plutonu jest to około 80 milionów lat dla najtrwalszego 244Pu i około 24,4 tysiąca lat dla spotykanego tam również izotopu 239Pu. Nawet jeśli jakiekolwiek ilości tych izotopów istniały przy powstaniu naszej planety, to nie było szans, aby dotrwały do naszych czasów. No ale jak sam napisałem, znaleźliśmy ich śladowe ilości w rudach uranu, a więc musiały się tam skądś pojawić.

Analiza złóż uranu, w których natrafiono na wspominane izotopy, naprowadziła badaczy na rozwiązanie. W 1972 roku grupa francuskich badaczy zauważyła, iż w złożu znajdującym się w Oklo na terenie Gabonu występuje pewna różnica zawartości izotopów uranu w rudzie. Jak do tej pory wszystkie badane złoża cechowała pewna prawidłowość: pochodząca z nich ruda uranu zawierała dokładnie 0,72% izotopu 235U; próbki pochodzące z Oklo zawierały go zaś znacznie mniej. Prawdę mówiąc, skład izotopowy rudy z tej kopalni bardzo przypominał skład wypalonego paliwa jądrowego. Co było takiego szczególnego w tym miejscu? Jaki był powód, dla którego ruda wydobywana w tej kopalni była inna niż wszędzie?

Obecnie neptunu mamy coraz więcej. Jak wspomniałem wcześniej, jest to odpad z wypalonych prętów paliwowych, których używamy w elektrowniach atomowych. Wymuszamy rozpad izotopu 235U, bombardując go neutronami, no ale pręty zawierają również w przewadze izotop 238, który może taki neutron pochłonąć, zwiększając swoją liczbę masową o 1. Takie jądro jest niestabilne i ulega rozpadowi beta minus, przemieniając się w neptun; dalsze bombardowanie pozwoli uzyskać pluton. Nasuwa się pytanie: czy taki proces mógł zajść naturalnie? Przecież paliwo używane w elektrowniach atomowych wymaga wcześniejszej obróbki, tak aby stosownie zwiększyć zawartość izotopu 235. Tak, teraz wymaga − ale czy taka konieczność występowała zawsze w przeszłości? Izotopy mają różne czasy połowicznego rozpadu. Zawartość tego, którego czas półtrwania jest krótszy, będzie maleć w czasie. I tak dzieje się z naturalnie występującym uranem: zawartość rozszczepialnego izotopu maleje, choć miliardy lat temu była wyższa. Oznacza to, iż wystarczyło zgromadzić w jednym miejscu odpowiednią jego ilość, aby mogła zajść reakcja łańcuchowa. O to postarała się rzeka płynąca w pobliżu Oklo, odpowiedniczka dzisiejszej Ogowe. Jej wody wymywały rudy uranu, gromadząc je np. w zakolach. Kolejnym szczęśliwym zbiegiem okoliczności jest sama woda − używamy jej w naszych reaktorach zarówno jako chłodziwa, jak i moderatora. Szacuje się że naturalny reaktor w Oklo mógł działać przez ok. 300 tysięcy lat, wytwarzając 100 mld kWh energii.

Czy tak więc wytworzono pozostałe pierwiastki siódmego okresu? Bombardując coraz cięższe jądra neutronami? Nie, to absolutnie bez sensu. Szanse na powstanie jądra w ten sposób są niewielkie, co oznacza konieczność posiadania wydajnych źródeł neutronów, a tymi są inne radioaktywne pierwiastki, których nie posiadamy nieograniczonych ilości. Swobodny neutron istnieje średnio około 15 minut, zanim ulegnie przemianie w proton, więc nie ma sensu nałapanie ich na zapas. Zresztą, jak wspomniałem, im jądro ma większą liczbę atomową, tym krócej istnieje, więc nie tylko musielibyśmy mieć dużo neutronów, ale również używać ich z odpowiednią precyzją, tak aby wstrzelić się we właściwy moment. Pewnym rozwiązaniem wydaje się użycie cząstek alfa: jeśli jądro je pochłonie, to zyskuje dwa protony i dwa neutrony, co daje więcej możliwości. Tak zresztą uzyskano pierwiastki takie jak np. kaliforn, nobel czy lorens. Tylko że nadal mówimy o liczbach atomowych nie większych niż 103. Dalsze doklejanie cząstek alfa w ten sposób staje się ekstremalnie trudne. Potrzeba nam bardziej wydajnego źródła neutronów i innych obiektów, które możemy wykorzystać.

O jakim bardziej wydajnym źródle mowa? Oprócz reaktorów mamy przecież bomby atomowe, w których zachodzą dokładnie te same procesy, co w reaktorze. I jest to prawda: w obszarach testów broni atomowej znaleziono pewne ilości jąder ameryku i kiuru. Tylko znów nie jest to odpowiednia metoda, aby produkować ciężkie jądra pierwiastków. Nie możemy w imię nauki robić rzeczy powodujących przedostawanie się odpadów tego rodzaju do środowiska, a w przypadku eksplozji bomby atomowej jest to nieuniknione: produkty rozszczepienia przedostają się do atmosfery, by opaść w najmniej spodziewanych miejscach. Pewne ilości ameryku znaleźliśmy m.in. na Antarktydzie oraz w koralowcach. Jak więc stworzyliśmy jądra pierwiastków od 104 do 118? Nie inaczej niż wcześniejsze: bombardując ciężkie jądra, tyle że nie cząstkami alfa, a czymś o wiele cięższym − jonami. Z tym że nie mogą być to jądra dowolnych pierwiastków, ale takich, których izotopy zawierają odpowiednie liczby protonów i neutronów. Jądra koperniku uzyskano na przykład, ostrzeliwując tarczę wykonaną z ołowiu jonami cynku rozpędzonymi uprzednio w akceleratorze do około 1/10 prędkości światła. Następnie powstałe jądra trzeba jak najszybciej schłodzić i liczyć na to, że uda się je złapać w odpowiednich detektorach. Ostatni z pierwiastków, tj. oganeson, udało się wytworzyć w ilości zaledwie czterech… jąder. To naprawdę droga zabawa: potrzeba odpowiednich izotopów, które dają szansę zlepienia się z ostrzeliwanymi w proporcjach pozwalających na istnienie choćby przez ułamek sekundy.

Czy wobec tego warto kontynuować? Prowadzić skomplikowane eksperymenty, których efektem są izotopy nie mające żadnego realnego zastosowania z uwagi na czas ich istnienia? Czy warto próbować z ósmym okresem? Gdzie jest koniec układu?

Mamy powody, aby przypuszczać, że ostatni z odkrytych pierwiastków, choć w konfiguracji elektronowej przypomina pozostałe gazy szlachetne, w standardowych warunkach jest ciałem stałym. Przyczyny tego należy upatrywać w tym samym zjawisku, które opisałem w tekście pt. Dlaczego złoto jest złote?. Im większa liczba protonów w jądrze, tym większa musi być liczba elektronów w samym atomie, aby pozostawał on elektrycznie obojętny. O ile nie można tych obiektów traktować jak naładowanych elektrycznie kuleczek krążących wokół jądra pozlepianego z kuleczek o ładunku przeciwnym, o tyle można im przypisać pewną cechę obiektów krążących po orbitach − moment pędu. Im jądro większe, tym szybciej musi się poruszać elektron znajdujący się na najbardziej zewnętrznej powłoce elektronowej. W przypadku superciężkich pierwiastków prędkości te stają się istotnymi ułamkami prędkości światła, co powoduje, że musimy uwzględniać efekty takie jak np. relatywistyczny wzrost bezwładności ciał w ruchu, popularnie, choć niezbyt szczęśliwie nazywany “relatywistycznym wzrostem masy”. Jakie ma to znaczenie dla granicy układu okresowego? Żaden obiekt obdarzony masą nie może osiągnąć prędkości światła, gdyż wymagałoby to nieskończonej energii. W przypadku oganesonu prędkości elektronów na powłoce walencyjne to około 70% prędkości światła. Może to oznaczać, że granica układu okresowego jest już gdzieś niedaleko, a jest nią ta liczba protonów, powyżej której elektron musiałby poruszać się szybciej niż światło. Szacuje się, że jest to nie więcej niż liczba Z = 210. Jeśli granicą jest prędkość c, to układ okresowy zamyka hipotetyczny biunnil.

Tylko jak to sprawdzić, skoro już obecnie wytwarzane jądra istnieją przez ułamki sekund? Pewnym rozwiązaniem może być model, przy którego powstaniu ogromy udział miała urodzona w Katowicach Maria Goeppert-Mayer. Zaproponowała ona mechanizm wyjaśniający powód, dla którego pewne izotopy są szczególnie stabilne. Pozwolę sobie zacytować słowa samej badaczki:

Wyobraź sobie salę pełną tańczących walca. Tancerze przesuwają się dookoła tej sali w koncentrycznych kołach. Dalej pomyśl, że w każdym kole możesz zmieścić dwa razy więcej tancerzy jeśli jedna para wiruje w kierunku ruchu wskazówek zegara, a druga w przeciwnym. A potem dodatkowa wariacja: pomyśl, że ci tancerze wirują w porywach, jak mistrzowie. Niektóre z tych par, które wirują w kierunku wskazówek zegara robią porywy w tym samym kierunku. Porywy pozostałych par są w kierunku przeciwnym. Tak samo z parami wirującymi w kierunku przeciwnym do kierunku wskazówek zegara – niektóre wykonują zrywy w tym samym kierunku, inne w przeciwnym.

Nie przypomina wam to czegoś? Atomy są szczególnie stabilne, gdy mają wypełnioną ostatnią powłokę elektronową, tak jak gazy szlachetne. Jądra wg. Marii są szczególnie stabilne, gdy mają wypełnione odpowiednie powłoki nukleonowe, które mogą być zajmowane przez pary protonów i neutronów. Liczby protonów i neutronów przy których powłoki nukleonowe są zamknięte, a dany izotop bardziej trwały w stosunku do sąsiednich, to 2, 8, 20, 28, 50, 82, 126 i 184 dla samych neutronów. Biorąc pod uwagę, że najcięższe stabilne jądro to 208Pb o magicznych liczbach protonów (Z=82) i neutronów (N=126), to rzecz wydaje się warta uwagi, zwłaszcza że sprawdza się również w innych przypadkach. Obliczenia wskazują iż kolejne liczby magiczne dla protonów to być może 114 i 120 a dla neutronów może być to liczba 196. Oznacza to że izotopy pierwiastków z ósmego okresu takie jak 304Ubn i 310Ubh powinny wykazywać podwyższoną trwałość i mieć izotopy istniejące nawet kilka miesięcy, choć ja przychylam się do opinii mówiących o godzinach.

fot. domena publiczna

Większość syntezowanych superciężkich jąder rozpada się w czasie rzędu milisekund, ale gdy uda się uzyskać jądra o większych liczbach neutronów, to zauważamy obszar nazywany wyspą stabilności W przypadku koperniku (Z=112) dodawanie kolejnych neutronów sprawia że jego izotop o liczbie masowej 285 ma czas połowicznego rozpadu ok. 29 sekund, a metastabilny izomer nawet 9 minut! Gra wydaje się być warta świeczki, stąd nasze, dotychczas bezskuteczne, próby syntezy unbinilu i unbiheksu. Jeśli uda się nam uzyskać odpowiednio stabilne izotopy tych pierwiastków, będzie to okazja, aby sprawdzić obliczenia, z których wynika, iż kolejna wyspa stabilności powinna znajdować się w okolicach liczby atomowej 164, gdzie mogą występować izotopy o czasach półrozpadu nawet rok i dłużej.

Takie pierwiastki mogą mieć interesujące zastosowania jako wydajne źródła neutronów czy materiał, którego będziemy używać do rozpoczęcia reakcji łańcuchowych w przyszłych reaktorach torowych. A najważniejszym powodem ich odkrycia jest w gruncie rzeczy nasza ciekawość, dzięki której nauka nigdy się nie kończy a Wszechświat zaskakuje nas coraz bardziej.

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem
.

Promieniujące orzechy – czyli znów ci dziennikarze…

Podejrzewam, że do świąt będę miał na tapecie przynajmniej po jednym dziennikarzu z każdej z tzw. “szanujących się” redakcji gazety czy radia. Mieliśmy już na tapecie “wyłączanie pola magnetycznego” i “rozmiary cząsteczek elementarnych”, a dziś skupimy się na temacie promieniowania i radioaktywności. Nasz blog zawiera świetny cykl o samym promieniowaniu, który polecam pod poniższym linkiem: Promieniowanie.

Co spowodowało, iż znów załamałem ręce? Zajrzyjcie pod ten link, bo brzmi naprawdę groźnie! https://pomorska.pl/oto-najbardziej-radioaktywne-produkty-spozywcze-lista-one-maja-najwiecej-promieniotworczych-pierwiastkow-9042024/ar/c14-18435665. Już pierwszy akapit powoduje we mnie poczucie, że znów nie wiem, o co chodzi, ale chyba powinienem się bać: “Każdy produkt spożywczy jest w pewnym stopniu radioaktywny. Poziom radioaktywności zależy od ilości znajdujących się w nim pierwiastków promieniotwórczych. Niekwestionowanym liderem są orzechy brazylijskie. Ich aktywność wynosi 6600 pCi/kg. Czy mogą zaszkodzić naszemu zdrowiu? Jakie jeszcze popularne produkty spożywcze znajdują się na liście? Szczegóły w naszym artykule.

Szanowna Pani − co to znaczy że aktywność wynosi 6600 pCi/kg? To dużo czy mało? Co to za jednostka i co to za lista produktów radioaktywnych? Jako że na wyjaśnienia autorki nie ma co oczekiwać, jak zwykle pomoże nasz blog.

Tak, każdy produkt jest w jakimś stopniu radioaktywny i ma to związek z zawartością pierwiastków promieniotwórczych, choć poprawnie należałoby powiedzieć − izotopów. O szczegółach już za chwilę, a teraz chciałbym się skupić na owym “6600 pCi/kg”. Jestem przeciwnikiem używania jednostek, z którymi Czytelnik nie spotyka się na co dzień, bez wyjaśnienia, co oznaczają. Metry, kilogramy czy sekundy są swojskie, ale takie pikokiury na kilogram (tak należy odczytać pCi/kg)? Jak bardzo radioaktywna jest garść takich orzechów i czy do wieczornego seansu nie należy jednak wybrać fistaszków?

Jednostki tej nie znajdziemy w Układzie SI − została ona nazwana na cześć jednej z najwybitniejszych Polek; myślę, że łatwo się domyślić, o kim mowa. Jeden kiur odpowiada aktywności 1g izotopu 226Ra. Nie jest to jednostka zbyt wygodna w stosowaniu, dlatego do opisu aktywności danej próbki lepiej posłużyć się bekerelem (Bq): jeśli w ciągu sekundy zajdzie w niej jeden rozpad promieniotwórczy, np. jeśli jedno jądro wyemituje jedną cząstkę alfa w tym czasie, to mówimy że aktywność próbki jest równa jednemu bekerelowi. 1 Ci (kiur) to w zaokrągleniu 37 GBq (gigabekereli), stąd łatwo obliczyć, że aktywność wspomnianych orzechów to około 244 Bq, czyli 244 rozpady w każdej sekundzie − pod warunkiem, że mamy pod ręką kilogram. Aktywność jednego orzecha będzie znacznie mniejsza. Kilogram kawy dla porównania charakteryzuje się aktywnością 1 kBq, czyli w każdej sekundzie zachodzi w nim tysiąc takich rozpadów. Może to jest przyczyną, dla której promieniujemy energią po małej czarnej? Żarty na bok. Powiedzieliśmy sobie jak na razie, że w żywności zachodzą rozpady radioaktywne i że nie ma w tym nic dziwnego. Wiemy również, że pracownicy palarni kawy nie pracują w strojach wymaganych przy pracy z materiałami radioaktywnymi. To jak to jest z tym, co na polu rośnie? Jeść − czy jednak przepijać każdy kęs płynem Lugola? Przepraszam, postaram się ograniczyć poczucie humoru, zwłaszcza tego rodzaju, wspomniany preparat nie jest “lekiem przeciwko promieniowaniu” i nie należy go spożywać. Spójrzmy na dalszą część cytowanego artykułu:

Wśród pierwiastków promieniotwórczych występujących w żywności można wymienić rad 226Ra, potas 40K, uran, cez czy stront. Niektóre z nich naturalnie występują w przetworach mlecznych, produktach zbożowych, owocach, warzywach czy wodzie mineralnej. Inne zaś, tak jak rad, migrują z gleby do roślin oraz wody, a następnie dostają się do organizmów zwierząt.

O ile zrozumiałbym taki zapis w SMS-ie, to szacunek dla Czytelników wymaga pewnej staranności: izotopy danych pierwiastków zapisujemy, umieszczając liczbę masową w lewym górnym rogu, tj. 226Ra, 40K. Nie rozumiem jednak, czemu podano promieniotwórcze izotopy dwóch pierwiastków, pomijając to przy następnych? Sugeruje to, że uran, cez i stront są promieniotwórcze w każdym przypadku, a tak nie jest. Uran, tak samo jak każdy pierwiastek zawierający w swoim jądrze więcej protonów niż ołów, nie posiada stabilnych izotopów, ale cez i stront jak najbardziej. Są to odpowiednio: 133Cs i 84Sr, 86Sr, 87Sr oraz 88Sr. Dalszej części cytowanego tekstu nie rozumiem do końca − bo co to znaczy, że w owocach są naturalnie a do roślin migrują z gleby? To skąd się wzięły w samych owocach?

Nie lubię pisania o radioaktywności w ten sposób. Sprawia to takie wrażenie, jakbyśmy nie stykali się z jakąś jej formą w każdej chwili. Wszystkie znane nam pierwiastki posiadają niestabilne izotopy; część z nich powstała naturalnie w toku procesów zachodzących np. we wnętrzach gwiazd. Tak na naszej planecie znalazły się np. uran i tor. Inne powstały i powstają w atmosferze Ziemi bombardowanej strumieniem promieniowania kosmicznego; przykładem jest tu radioaktywny izotop węgla 14C. Część z nich jest wtórnym efektem rozpadu uranu i toru, czego przykładem może być odkryty przez Marię Skłodowską rad. Inne to efekt naszych wesołych eksperymentów polegających na ostrzeliwaniu jąder neutronami bądź jonami. Choć jak wspomniałem, wszystkie pierwiastki posiadają izotopy promieniotwórcze, to z absolutną większością nigdy się nie zetkniecie: ich czas półrozpadu jest rzędu od mikrosekund do miesięcy. Te, z którymi mamy najczęściej kontakt, to izotopy potasu, węgla i pierwiastków będących produktami rozpadu uranu i toru. Ponieważ potas jest minerałem powszechnie występującym w skorupie ziemskiej, to rośliny pobierają go wraz z wodą z gleby. Ponieważ minerały zawarte w glebie to zawsze mieszanka różnych izotopów danego pierwiastka, to oczywistym jest, że drobna cześć pobranego przez roślinę potasu będzie radioaktywnym izotopem 40K.

Tych samych minerałów używamy do budowy naszych domów, dlatego same ściany naszych domów są w jakimś stopniu radioaktywne. Bardzo często mamy kontakt z jednym z produktów rozpadu uranu − jest to radon, który przecież jest gazem. W tej postaci ze skorupy ziemskiej trafia do atmosfery, gdzie ulega dalszemu rozpadowi, stając się radioaktywnym izotopem bizmutu 214Bi. Metale to ciała stałe, więc nie należy się dziwić, że czujniki różnych stacji notują zwiększony poziom promieniowania po każdym deszczu. Prawdę powiedziawszy, to radon jest odpowiedzialny za większość radioaktywności, z którą mamy kontakt w ciągu życia. Jest gazem, więc kumuluje się w zamkniętych pomieszczeniach, w których przecież spędzamy większość życia. Z tym, że nie ma się czego obawiać: w badaniach przeprowadzonych na obszarach o podwyższonej promieniotwórczości naturalnej nie odnotowano zwiększonej zapadalności na nowotwory. Czy więc należy się obawiać spożywania orzechów, bananów, kawy czy czegokolwiek? Nie, większe dawki przyjmujemy z innych źródeł i nie obserwujemy negatywnych efektów. Nie istnieje żaden sposób, aby uniknąć naturalnej promieniotwórczości; jest z nami od zawsze i będzie tak długo, jak długo będą istnieć jądra zdolne do rozpadu. Jeśli to, co chcecie zjeść, nie rosło na niezabezpieczonym składowisku odpadów radioaktywnych lub nie zostało wzbogacone intencjonalnie o takie pierwiastki, to absolutnie nie ma się czego obawiać.

fot. CC BY 3.0.

Oddziaływanie, któremu zawdzięczamy istnienie jąder atomowych, jest nazywane silnym. Biorąc pod uwagę jego zdolność do przezwyciężenia sił związanych z elektromagnetyzmem, jest to jak najbardziej usprawiedliwiona nazwa. Niestety zdolność ta jest ograniczona do bardzo krótkiego dystansu. Naprawdę krótkiego. Aby sobie to jakoś zobrazować, proszę sobie wyobrazić najmniejszy z atomów, czyli wodór. Jego promień atomowy wynosi ok. 5,291 772 · 10−11m − zasięg, na którym oddziaływanie silne jest zdolne do pokonania elektromagnetycznego, to 10 tysięcy razy mniej. No to jakim cudem istnieją (i mają się dobrze) jakiekolwiek jądra większe niż hel? Przecież to się (dzięki ładunkowi elektrycznemu jaki przenosi każdy proton) kupy nie trzyma w żaden sposób?

Trzyma! I musi się trzymać, czego dowodem naocznym są żelazne gwoździe! Oddziaływanie silne jest związane z ładunkiem umownie nazywanym kolorem, który przenoszą kwarki tworzące protony i neutrony. Cząstki przenoszące kolor mają specyficzną cechę: im bardziej próbujemy je wyrwać z układu z pozostałymi, tym mocniej się trzymają. Choćby włożyć w to dowolnie dużo energii, to i tak nigdy nie uzyskamy swobodnego kwarka, ale zawsze twór nazywany mezonem, składający się z pary kwark-antykwark. Właśnie wymiana takich par, noszących w omawianym przypadku nazwę pionów, pomiędzy protonami i neutronami trzyma jądra w całości. Z tym, że znów − zasięg takiego oddziaływania nie jest nieograniczony i aby istnieć, jądro musi zawierać neutrony, które stanowią rolę swoistego łącznika pomiędzy protonami. Dość naiwnie, ale w sposób wystarczający dla tego modelu, można sobie wyobrazić, iż wymiana pionów powoduje, iż każdy tworzący je neutron i proton cały czas zmienia swoją tożsamość.

No to prześledźmy pokrótce listę stabilnych izotopów, może rzuci się nam w oczy jakaś prawidłowość. Najbardziej popularny jest wodór w postaci protu. Zawiera w swoim jądrze jeden proton, a o ile nam wiadomo, protony się nie rozpadają. Gdy próbować skleić z sobą dwa protony, jak dzieje się to np. we wnętrzu Słońca, to efektem będzie nie 2He tylko 2H (D) czyli trwały izotop wodoru tj. deuter.

fot. domena publiczna

Stabilne izotopy helu zawierają w swoim jądrze jeden lub dwa neutrony, przy czym najbardziej rozpowszechniony jest wariant 4He czyli izotop zawierający w swoim jądrze dwa protony i dwa neutrony. Spójrzmy na węgiel: ma dwa stabilne izotopy, przy czym więcej jest tego zawierającego w jądrze 6 neutronów i 6 protonów. Podobna prawidłowość zachodzi dla azotu, tlenu i neonu. Przewagę mają izotopy zawierającego równą liczbę neutronów i protonów. W przypadku kolejnych pierwiastków pozostaje to prawdą dla pierwiastków o parzystej liczbie protonów w jądrze, w przypadku nieparzystej przewagę mają izotopy zawierające o jeden lub dwa neutrony więcej w porównaniu do liczby protonów.

Ostatnim pierwiastkiem spełniającym tę regułę jest wapń, którego najbardziej rozpowszechnionym izotopem jest 40Ca. Od tytanu zaczyna się to rozjeżdżać: przewagę mają te izotopy, w których jest nadmiar neutronów w stosunku do protonów, z tym że nie widać w tym żadnej prawidłowości. Jedyne, co rzuca się w oczy, to to, że pierwiastki o parzystych liczbach protonów mają więcej stabilnych izotopów w porównaniu do nieparzystych, które mają jeden lub dwa stabilne izotopy. Cyna, mająca liczbę atomową 50, ma aż dziesięć stabilnych izotopów, podczas gdy antymon o liczbie atomowej 51 jedynie dwa; kolejny tellur osiem, a następny jod jeden. Wyliczanka kończy się na ołowiu, który posiada cztery stabilne izotopy. Następny na liście jest bizmut z jednym izotopem, który nie jest stabilny, choć może się takim wydawać, bo jego czas półtrwania przekracza wiek Wszechświata. Kolejne pierwiastki nie mają już żadnych stabilnych izotopów, choć tor i uran posiadają na tym tle względnie dużo izotopów o czasie półtrwania do miliardów lat, co pozwala im występować naturalnie na naszej planecie. Liczba izotopów niestabilnych w przypadku poszczególnych pierwiastków pozwala nam dostrzec pewną zależność.

fot. CC BY 4.0.

Jeśli dany izotop leży poniżej ścieżki wyznaczonej przez izotopy stabilne, to jego sposób rozpadu będzie związany ze zmniejszeniem liczby neutronów w jądrze poprzez rozpad beta minus, czyli przemianę jednego z neutronów w proton przy jednoczesnej emisji elektronu i antyneutrina. Jeśli jądro zawiera niedobór neutronów w stosunku do izotopów stabilnych, to należy się spodziewać rozpadu beta plus, polegającego na przemianie protonu w neutron przy emisji pozytonu i neutrina. Jeśli dany izotop leży poza końcem ścieżki stabilności, to najczęściej rozpada się, emitując cząstkę alfa, składającą się z dwóch protonów i dwóch neutronów. Nie ma prostego algorytmu, który na podstawie liczby protonów w jądrze poda nam, ile możemy uzyskać izotopów danego pierwiastka, ale można zauważyć, że dla pewnych liczb protonów i neutronów w jądrze jest ono bardziej trwałe w stosunku do sąsiednich. Są to tzw. liczby magiczne: 2, 8, 20, 28, 50, 82, 126 i 184 dla samych neutronów. Biorąc pod uwagę, że najcięższe stabilne jądro to 208Pb o magicznych liczbach protonów (Z=82) i neutronów (N=126), to rzecz wydaje się warta uwagi, zwłaszcza że sprawdza się również w innych przypadkach. Zwracam uwagę, iż najbardziej rozpowszechniony izotop helu to 4He. Jest to szczególnie ciekawe w kontekście poszukiwania cięższych pierwiastków. Większość syntezowanych superciężkich jąder rozpada się w czasie rzędu milisekund, ale gdy uda się uzyskać jądra o większych ilościach neutronów to zauważamy obszar nazywany wyspą stabilności gdzie np. izotop 270Hs (pierwiastka zwanego hasem) ma czas półrozpadu ok. 22s! Sugeruje to, iż jądro, tak jak atom, posiada powłoki energetyczne możliwe do zajmowania przez jego składniki, a wypełnienie takich powłok sprawia, iż jądro jest stabilniejsze. Jest również nadzieja na syntezę dalszych pierwiastków, aby sprawdzić, gdzie leży granica!

Współczesna (2012) ocena położenia i rozmiarów wyspy stabilności, z maksimum czasu życia dla izotopów koperniku (Z = 112). Widoczny jest także obszar wysokiej niestabilności jąder, który dla obecnie badanych dróg syntezy rozciąga się powyżej Z ≈ 120

fot. domena publiczna

Kończąc ten tekst − zawsze, gdy ktoś w alarmistycznym tonie opowiada o radioaktywności wokół nas, to pamiętajcie, że macie z nią stały kontakt. Czy to w żywności, czy to podczas oddychania, czy z deszczem.

Spośród kilkudziesięciu izotopów promieniotwórczych występujących w sposób naturalny w przyrodzie, zaledwie kilka obecnych jest w różnych produktach spożywczych. Należą do nich przede wszystkim 14C, 40K oraz izotopy radu, toru i ich pochodne. Najbardziej rozpowszechniony jest izotop potasu 40K oraz izotop węgla 14C, które w organizmie człowieka o masie 70 kg odpowiadają za radioaktywność około 10 000 Bq.

W wyniku rozszczepienia ciężkiego jądra, np. uranu lub plutonu, powstaje około 100 różnych izotopów promieniotwórczych, jednakże tylko kilka z nich ma praktyczne znaczenie w przypadku skażenia żywności. Należą do nich głównie izotopy jodu, cezu i strontu, dla których ustalono normy zawartości zawierające się w przedziałach od 100 do 1000 Bq/kg w zależności od rodzaju izotopu (137Cs, 131I, 90Sr, 40K) i rodzaju żywności. Inne będą dla owoców, a inne dla mleka lub mięsa. O tym, dlaczego skupiono się na tych izotopach, oraz o tym, jak konkretnie przedostają się do środowiska, porozmawiamy sobie w kolejnym tekście, gdzie poruszę to w związku z rocznicą katastrofy w Czarnobylu.

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem
.