Splątanie kwantowe, czyli coś, co działa, ale nie wiadomo dlaczego

Inne wpisy o powiązanej tematyce:

Kryptografia kwantowa, czyli w poszukiwaniu absolutu
Chaos, czyli efekt motyla
Miara wszechrzeczy, czyli pofilozofujmy
Liczby trochę mniejsze od nieskończoności

Czy fizyka jest nudna? Dla większości jest nudna, bo co jest ciekawego w równi pochyłej albo w prawie Archimedesa? Istnieją jednak dziedziny fizyki, które budzą szczególne zainteresowanie. Dotyczy to szczególnie zagadnień z pogranicza science-fiction, a wręcz zaprzeczających zdrowemu rozsądkowi: teoria względności, teoria kwantów, rozszczepienie atomu, nadprzewodnictwo czy fuzja jądrowa. Ostatnio na medialnym topie znalazło się splątanie kwantowe, wyróżnione (jeśli można tak powiedzieć o dziedzinie nauki) Nagrodą Nobla z fizyki za 2022 rok. Otrzymał ją profesor Anton Zeilinger [2], austriacki fizyk-teoretyk z Uniwersytetu Wiedeńskiego (na spółkę z Alainem Aspectem i Johnem F. Clauserem). Profesor Zeilinger jest doktorem honoris causa Uniwersytetu Gdańskiego. On i drugi z noblistów – Alain Aspect od lat współpracują z Międzynarodowym Centrum Teorii Technologii Kwantowych Uniwersytetu Gdańskiego.

Ryc. 1 Profesor Anton Zeilinger. Źródło: Austriacka Akademia Nauk

Czym jest splątanie kwantowe?

Najprościej można powiedzieć, że jeśli dwa obiekty kwantowe, na przykład atomy, po uprzednim schłodzeniu i przygotowaniu w odpowiednich stanach kwantowych, “zetkniemy” ze sobą w pewien szczególny sposób, pozwalając oddziaływać im elektromagnetycznie, poprzez wymianę fotonów lub pól kwantowych, a następnie rozdzielimy, to stają się jednym obiektem kwantowym, a wartość pomiaru wielkości kwantowej jednej cząstki jest ściśle skorelowana z wartością tej wielkości drugiej cząstki, niezależnie od dzielącej je odległości tak, aby stan układu (superpozycja) pozostał bez zmian.

Splątanie fotonów można uzyskać za pomocą kryształów nieliniowych (Ryc. 2). Wpuszczając do takiego kryształu jeden foton możemy uzyskać dwa fotony splątane, drgające w prostopadłych do siebie płaszczyznach. Następnie, za pomocą światłowodu, możemy oddalić te fotony na znaczną odległość i przeprowadzić pomiar.

“Niezależnie” rzeczywiście oznacza “niezależnie”, bo odległości mogą być kosmiczne a ich wpływ na efekt splątania – żaden. Mierząc stan cząstki, która mamy pod ręką “mierzymy”, natychmiast i zdalnie, stan cząstki praktycznie nieskończenie odległej. Czy to oznacza, że możemy przenosić informację z prędkością większą od prędkości światła? Niestety nie, tu nadal obowiązuje zasada wynikająca z równań Einsteina, że prędkość światła jest największą prędkością, jaką może osiągnąć materia lub energia. Obala to mit, że tą metodą możemy transmitować informację z nieskończoną prędkością. Można natomiast powiedzieć, że dokonujemy w pewnym sensie teleportacji informacji. Odczytując stan jednej cząstki po prostu wiemy, jaki jest stan drugiej cząstki. Na przykład para splątanych fotonów ma przeciwne polaryzacje. Przed dokonaniem pomiaru każdy foton jest w nieoznaczonym stanie kwantowym, zgodnie z zasadą nieoznaczoności Heisenberga. Przed pomiarem znamy stan całego układu (przeciwne polaryzacje fotonów), nie znając stanów składników tego układu (który foton drga w polaryzacji poziomej H, a który w pionowej V?). Układ ten jest jednym obiektem kwantowym. Dopiero sam fakt pomiaru pierwszego fotonu determinuje stan drugiego fotonu. Mówiąc inaczej, generując strumień par niesplątanych fotonów, wysyłając każdy foton z pary do innego obserwatora (A i B) i mierząc parami ich polaryzację otrzymamy zgodność polaryzacji fotonów A i B w 50% przypadków, co jest wynikiem intuicyjnie przewidywalnym. Jeśli natomiast fotony w każdej parze będą przed wysłaniem splątane, to korelacja będzie stuprocentowa.

Splątane fotony przed odczytem ich wartości splątania znajdują się w stanie tzw. superpozycji kwantowej, to znaczy, że posiadają jednocześnie wszystkie stany możliwe do odczytania. Przyjmując, że polaryzacja H oznacza 0 (zero), a polaryzacja V oznacza 1, splątane fotony mają jednocześnie wartość 0 i 1. Dopiero sam akt odczytu (jednego fotonu) determinuje ostatecznie wartości polaryzacji obu fotonów.

Pierwsze doświadczenia splątania kwantowego przeprowadzono w 1972 roku, a w 1998 zespół Nicolasa Gisina z Genewy wytworzył i utrzymał splątanie pary fotonów po przesłaniu na odległość 10 km. Wspomniany wcześniej Anton Zeilinger utrzymał splątanie fotonów odległych o 144 kilometry. Obecnie splątanie realizuje się na odległości liczone w tysiącach kilometrów, między Ziemią a wyspecjalizowanymi satelitami. O tym będzie później, przy okazji opisu kwantowej dystrybucji klucza szyfrującego (QKD).

Idea splątania kwantowego doprowadziła grupę włoskich fizyków z turyńskiego Narodowego Instytutu Badań Meteorologicznych (INRiM) do wniosku, że czas jest złudzeniem i zaczyna biec dopiero po interakcji obserwatora z (umownym) zegarem. Jest to wniosek filozoficzny, niepoparty dowodem matematycznym, a tym bardziej doświadczeniem, ale należy przyznać, że jego piękno jest niezaprzeczalne.

Trochę historii

Wszystko zaczęło się od Alberta Einsteina. W 1935 roku opublikował on, wspólnie z Borysem Podolskim i Nathanem Rosenem pracę mającą dowieść, że mechanika kwantowa nie jest teorią kompletną. Powszechnie bowiem wiadomo, że Einstein był wrogiem teorii kwantowej, a szczególnie jej interpretacji probabilistycznej. Mawiał nawet, że “Bóg nie gra w kości”. W wyniku przeprowadzonego eksperymentu myślowego zwanego paradoksem EPR (Einsteina-Podolskiego-Rosena) pokazano na gruncie matematycznym mechaniki kwantowej, że w pewnych sytuacjach cząstki kwantowe powinny natychmiast reagować na zmianę stanu swojego splątanego partnera, nawet jeśli ten znajduje się w dowolnie dużej odległości. Przeczyłoby to aksjomatowi, że informacja nie może być przekazywana z prędkością większą od prędkości światła. „Księżyc istnieje także wtedy, gdy na niego nie patrzę”, mawiał Einstein i nazwał splątanie „upiornym oddziaływaniem na odległość”. Inny fizyk teoretyczny, jeden z ojców-założycieli mechaniki kwantowej, Erwin Schrödinger (ten od kota), zainspirowany eksperymentem myślowym EPR, jako pierwszy wprowadził termin „splątanie” i stwierdził, że wiedza o układzie fizycznym (na przykład dwa splątane fotony) nie oznacza wiedzy o jego częściach (poszczególnych fotonach). Było to prorocze spostrzeżenie, docenione dopiero pod koniec XX wieku.

Ryc. 2 Ilustracja splątania fotonów po przejściu przez kryształ o nieliniowej charakterystyce.
(Wikimedia Commons/J-Wiki [GNU Free Documentation License – domena publiczna])

Natura splątania kwantowego

Naturę splątania kwantowego próbował wyjaśnić Einstein, wprowadzając pojęcie zmiennych ukrytych czyli informacji zawartych w fotonach przed osiągnięciem stanu splątanego. Te właśnie zmienne ukryte miałyby oddziaływać później na splątane fotony. Teoria ta została obalona przez Johna Stewarta Bella, który sformułował w 1964 twierdzenie (zwane nierównościami Bella) mówiące, że “Żadna lokalna teoria zmiennych ukrytych nie może opisać wszystkich zjawisk mechaniki kwantowej.”.

Najciekawszą teorią tłumaczącą stan splątania kwantowego, bazującą na pracy Stephena Hawkinga z 1964 roku o tym, że czarne dziury wcale nie są takie “czarne” i emitują promieniowanie, jest hipoteza równoważności splątania kwantowego z tunelami czasoprzestrzennymi, tzw. tunelami Einsteina-Rosena. Oba wymienione pojęcia wynikają wprost z dwóch artykułów Alberta Einsteina z 1935 roku, ale Einstein nawet nie podejrzewał, że mogą być one ze sobą powiązane. Tunele czasoprzestrzenne wynikają z jednego z rozwiązań równań Einsteina zaproponowanego przez niemieckiego fizyka Karla Schwarzschilda, genialnego, przedwcześnie i tragicznie zmarłego geniusza. Rozwiązanie było na tyle dziwne, że dopiero w latach 60. XX wieku zorientowano się, że opisuje ono tunel czasoprzestrzenny łączący dwie czarne dziury. Juan Macaldena [1], fizyk teoretyczny z Princeton uważa, że dzięki splątaniu kwantowemu tworzy się geometryczne połączenie między dwoma czarnymi dziurami, które poprzez swoje wnętrze tworzą tunel czasoprzestrzenny. Dwie czarne dziury, wyglądające z zewnątrz jak dwa niezależne obiekty, w rzeczywistości mają wspólne wnętrze. Oczywiście użyte pojęcie “geometryczny” nie oznacza naszej zwykłej geometrii trójwymiarowej ale wymiarów wyższych, w których nasz trójwymiarowy Wszechświat jest zanurzony.

Splątanie kwantowe w praktyce

Obiecującym zastosowaniem splątania kwantowego jest kryptografia kwantowa, a konkretnie bezpieczna dystrybucja kluczy kryptograficznych. Odbywa się to za pomocą satelity, który generuje klucz i rozsyła go laserowo do odbiorców. Specyfika splątania gwarantuje 100% zabezpieczenie przed podsłuchem lub sfałszowaniem, gdyż każda próba ingerencji, na przykład odczyt albo zmiana treści, w wysyłaną wiązkę fotonów spowoduje niejako zniszczenie zawartej w niej informacji. Elementem protokołu jest informacja kontrolna, której pozytywna weryfikacja gwarantuje brak ingerencji w przesyłany strumień informacji, co oznacza, że nie nastąpił podsłuch transmisji. Po pomyślnej weryfikacji w węźle odbiorczym, uzyskujemy (wynikającą z praw mechaniki kwantowej) gwarancję poufności klucza.

Kwantowa dystrybucja klucza (Quantum Key Distribution QKD) powoli staje się pełnoprawnym elementem ekosystemu szyfrowania danych. W dalszym ciągu kanał przesyłania danych jest klasycznym kanałem cyfrowym a kanał dystrybucji klucza szyfrującego jest kanałem kwantowym. Należy odnotować znaczny wkład polskich badaczy w rozwój QKD. Najdłuższe w Europie łącze QKD jest właśnie testowane między Poznaniem a Warszawą. Jeden z najlepszych protokołów QKD wykorzystujących splątanie fotonów o nazwie E91 jest dziełem polskiego fizyka Artura Ekerta.

Źródła:

Równoważność splątania kwantowego i tuneli czasoprzestrzennych
https://www.projektpulsar.pl/struktura/2161853,1,splatanie-i-tunele-czasoprzestrzenne-faktycznie-sa-rownowazne.read

Wywiad z Antonem Zellingerem https://wyborcza.pl/7,75400,5801859,o-dziwacznych-prawach-mechaniki-kwantowej-opowiada-guru.html

Wywiady z noblistami 2022
https://optics.org/news/13/10/6

Intercontinental, Quantum-Encrypted Messaging and Video

https://physics.aps.org/articles/v11/7

Global quantum internet dawns, thanks to China’s Micius satellite

https://newatlas.com/micius-quantum-internet-encryption/53102/?itm_source=newatlas&itm_medium=article-body

Czy fizyka nicości leży u podstaw wszystkiego?

https://przystaneknauka.us.edu.pl/artykul/czy-fizyka-nicosci-lezy-u-podstaw-wszystkiego

https://space24.pl/satelity/splatanie-kwantowe-z-poziomu-nanosatelity-nowy-rozdzial-badan-analiza

Cztery zaskoczenia (4a): Fizyka

Inne odcinki serii:

Cztery zaskoczenia (1): Biologia (systematyka i ewolucja)
Cztery zaskoczenia (2): Astronomia
Cztery zaskoczenia (3): Chemia
Cztery zaskoczenia (4b): Fizyka
Cztery zaskoczenia (4c): Fizyka

Tu także, jak w poprzednich odcinkach cyklu, mam problem typu l’embarras du choix, czyli nadmiaru możliwości do wyboru. Co prawda niektóre z zaskoczeń astronomicznych czy chemicznych można jednocześnie uznać za fizyczne. Dlatego, skoro wspominałem już przy innej okazji np. o badaniu czarnych dziur czy detekcji fal grawitacyjnych, to nie będę już do nich wracał. Tym razem ucieknę od kosmologii i astrofizyki w stronę mikroświata cząstek elementarnych i zjawisk kwantowych. Oczywiście za mojej pamięci i tu wiele się działo. Spróbuję o tym opowiedzieć. Przepraszam z góry, jeśli jako niespecjalista być może popełniam tu i ówdzie błędy rzeczowe. Skłamałbym, twierdząc, że moja wiedza o mechanice kwantowej i cząstkach elementarnych jest głęboka. „Ale staram się, Ringo” – jak deklarował Jules Winnfield w Pulp Fiction. Na pewno warto mieć w tych sprawach jako taką orientację.

Żeby jednak nie wystraszyć Czytelników nadmiarem szczegółów technicznych, przedstawię swoje cztery zaskoczenia fizyczne w trzech rozsądnych dawkach –  dwa w jednym wpisie, a potem po jednym w kolejnych. Przyczyna jest prozaiczna: o niektórych rzeczach nie sposób opowiedzieć krótko. Jeśli uważacie, że coś przedstawiłem nieprzejrzyście, zachęcam do dyskusji w komentarzach. Chętnie doprecyzuję wszelkie niejasności.

1. Burzliwe morze wewnątrz protonu

Nukleony (protony i neutrony) uchodziły kiedyś za cząstki elementarne. W 1964 r. pojawiła się teoria oddziaływań silnych Murraya Gell-Manna i George’a Zweiga, a wraz z nią hipoteza, że każdy nukleon składa się trzech silnie związanych mniejszych cząstek – kwarków. Doświadczenia z głębokim rozpraszaniem niesprężystym elektronów na nukleonach, przeprowadzone cztery lata później na wielkim akceleratorze liniowym Uniwersytetu Stanforda dowiodły, że nukleony faktycznie nie są miniaturowymi odpowiednikami kul bilardowych, tylko posiadają ziarnistą strukturę wewnętrzną. Innymi słowy, coś w nich siedzi. Zgodnie z przewidywaniami teoretyków w przypadku protonu p są to dwa kwarki górne u (każdy o ładunku +⅔ e) i jeden kwark dolny d (o ładunku −⅓ e). Symbolicznie: p = uud. Zauważmy, że suma ładunków elektrycznych kwarków wynosi +1 e i taki też jest ładunek protonu.

Proton nie jest jednak prostą sumą swoich składników: zawiera także oddziaływania między nimi, a zgodnie z formułą Einsteina (E = mc²) energia oddziaływań uwięziona w jakimś układzie wnosi wkład w jego masę. Suma mas u, u, d – tzw. kwarków walencyjnych, decydujących o tym, że proton jest protonem – odpowiada tylko za ok. 1% masy protonu. Reszta – to ekwiwalent energii kinetycznej i potencjalnej kwarków oraz tego, co je wiąże: energii oddziaływań silnych, których nośnikami są gluony. Wewnętrzna energia protonu generuje wirtualne pary kwark–antykwark, ulegające niemal natychmiast anihilacji. W rezultacie proton wypełniony jest nie tylko polem gluonowym, ale i „morzem” pojawiających się i znikających kwarków i antykwarków. Innymi słowy, stanowi gmatwaninę cząstek i oddziaływań, w której niełatwo się rozeznać. Choć swobodny proton jest cząstką trwałą i niezmienną, a jeśli go zostawić w spokoju, ma szansę „żyć wiecznie”, to uwięziona w nim energia nieustannie wrze.

Artystyczna wizja kwarków walencyjnych, gluonów i morza kwarków wirtualnych wewnątrz protonu. Autor: Daniel Dominguez/CERN.

Im większe zderzacze i im wyższa energia zderzeń, z tym lepszą rozdzielczością możemy sondować strukturę protonu i obserwować jego składniki. W ostatnich dziesięcioleciach postęp w tej dziedzinie jest imponujący. W eksperymentach, w których na przykład ciekły wodór i deuter bombardowane są strumieniem rozpędzonych protonów, analiza produktów zderzeń ujawnia znaczenie składników wirtualnych. Jeśli zaobserwujemy kwark u lub d, to nie sposób stwierdzić, czy jest on jednym ze stałych rezydentów (kwarków walencyjnych), czy też należy do morza cząstek wirtualnych. Jeśli jednak dostrzeżemy wewnątrz protonu antykwark ū lub , ewentualnie kwark o innym, bardziej egzotycznym „zapachu” (np. kwark dziwny s), to wiemy na pewno, że natknęliśmy się na wirtualny składnik morza podczas jego przelotnej egzystencji. A oprócz masy także spin, czyli wewnętrzny moment pędu protonu, jest tylko w kilku lub kilkunastu procentach sumą spinów kwarków walencyjnych, poza tym zaś stanowi kombinację momentów pędu wszystkiego, co w protonie siedzi. Zdarza się, że w danej chwili jeden wirtualny antykwark wnosi prawie połowę wkładu w całkowity spin protonu, choć formalnie rzecz biorąc nie jest jego składnikiem.

To samo oczywiście dotyczy neutronu, z tą tylko różnicą, że jego skład kwarkowy jest nieco inny (n = udd), że w związku z tym suma ładunków kwarków (czyli ładunek neutronu) wynosi 0 i że swobodny neutron jest cząstką nietrwałą (a przez to nieco trudniejszym obiektem do badania). Mimo że znamy już budowę nukleonów, zachodzące w nich oddziaływania są na tyle skomplikowne, że brak dotąd teorii wyjaśniającej szczegółowo cechy nukleonów na podstawie właściwości ich składników. A pamiętam czasy, kiedy proton czy neutron był gładką kulką, której odmawiano prawa do życia wewnętrznego!

2. Splątanie i informacja kwantowa

W roku 2022 nagrodę Nobla z fizyki zdobyli trzej uczeni (Alain Aspect, John Clauser i Anton Zeilinger), którzy w latach siedemdziesiątych, osiemdziesiątych i dziewięćdziesiątych XX w. prowadzili badania nad różnymi aspektami splątania kwantowego. Jest to przewidywane przez mechanikę kwantową zjawisko, które może się wydawać sprzeczne nie tylko z intuicją, ale także z fundamentalną wiedzą o właściwościach czasoprzestrzeni. O ile to pierwsze nie jest w fizyce nowością (wiemy, jak zawodny jest „zdrowy rozsądek” czerpany z potocznego doświadczenia), o tyle to drugie było powodem do niepokoju. Zwrócili na to uwagę Albert Einstein, Boris Podolsky i Nathan Rosen (EPR) w publikacji z roku 1935. Ich zdaniem przewidywane zachowanie układów kwantowych było nie do pogodzenia ze szczególną teorią względności i relatywistycznym pojmowaniem zasady przyczynowości. Miało to świadczyć o ukrytych wadach mechaniki kwantowej, podważających całą teorię.

Na czym polega splątanie? Otóż może się tak zdarzyć, że stan kwantowy złożonego układu jest dobrze określony, podczas gdy stany jego lokalnych składników pozostają nieokreślone. Wyobraźmy sobie, że układ składa się z dwu cząstek wyemitowanych w przeciwnych kierunkach. Cząstki wygenerowano w taki sposób, że znamy ich własność wspólną (stan układu jako całości), ale każda z nich jest opisana przez superpozycję, czyli kwantowe złożenie różnych stanów. Mimo oddalenia cząstki pozostają z sobą „splątane” w tym sensie, że ich stany kwantowe są z sobą wzajemnie skorelowane. Jeżeli dokonujemy pomiaru stanu jednej z cząstek splątanych, powodujemy, że przybiera on określoną wartość. Jaką  – tego nie da się z góry przewidzieć, bo możliwe wyniki pomiaru mają rozkład losowy. Pomiar wpływa jednak na cały układ objęty splątaniem, co pozwala nam przewidzieć – w idealnym przypadku z pewnością, w praktyce z większą dozą pewności niż przy zgadywaniu w ciemno – jaki okaże się wynik pomiaru dokonanego przez innego obserwatora na drugiej cząstce, choćby znajdowała się w dużej odległości od pierwszej.

Spójność układu kwantowego, dopóki nie zostanie naruszona przez pomiar (oznaczający fizyczną ingerencję), nie zanika z odległością. Panowie EPR uważali, że oznacza to możliwość natychmiastowego przekazania informacji z nieskończoną prędkością, czyli „upiornego oddziaływania na odległość”, co rzeczywiście byłoby sprzeczne ze szczególną teorią względności. Jednak – aczkolwiek dzięki eksperymentom nagrodzonym zeszłorocznym Noblem wiemy, że splątanie jest zjawiskiem całkowicie rzeczywistym – z rozważań teoretycznych wynika, że nie można go użyć do przesłania z prędkością nadświetlną informacji mogącej posłużyć do naruszenia zasady przyczynowości. Dokładniej – nie można za jego pomocą sprawić, że kolejność w czasie przyczyny i skutku ulegnie odwróceniu w jakimkolwiek inercjalnym układzie odniesienia. A zatem paradoks EPR nie prowadzi do prawdziwej sprzeczności.

Ambitne plany IBM: procesory kwantowe z rosnącą liczbą kubitów. Źródło: IBM.

Splątanie przejawia się na różne sposoby. Jednym z efektów specjalnych, jakie mu zawdzięczamy, jest „teleportacja kwantowa” – możliwość przeniesienia na odległość stanu kwantowego z wykorzystaniem obiektów splątanych kwantowo, bez przesyłania materii lub energii. Można ją wykorzystać np. do bezpiecznego szyfrowania: zakodowana wiadomość jest przesyłana kanałem klasycznym (np. przez światłowód lub drogą radiową), a klucz umożliwiający jej odczytanie – „teleportowany” w postaci informacji kwantowej. Jeśli komunikat zostanie przechwycony, to bez klucza jest bezużyteczny, natomiast próba przechwycenia klucza nie jest możliwa w sposób niezdradzający interwencji podsłuchującego. Sam klucz nie jest komunikatem i nie da się za jego pomocą przekazać informacji „klasycznej”.

Warto też pamiętać, że możliwość splątania dużych zbiorów kubitów (jednostek informacji kwantowej) decyduje o szybkości i efektywności działania komputera kwantowego w porównaniu z komputerem klasycznym. Kubit tym się różni od klasycznego bitu (mogącego przyjąć dwie wartości, 0 lub 1), że dopóki nie zostanie odczytany („zaobserwowany”), jego stan jest kwantową mieszanką, czyli superpozycją obu możliwości. Większa liczba kubitów może tworzyć tzw. rejestr kwantowy. Ciąg dwudziestu bitów klasycznych pozwala na zapamiętanie jednej z 2²⁰ = 1 048 576 kombinacji zero-jedynkowych. Ciąg dwudziestu kubitów utrzymywanych w stanie splątania umożliwia jednoczesne zapamiętanie wszystkich (czyli ponad miliona) kombinacji w formie superpozycji na potrzeby obliczeń kwantowych. Aczkolwiek informatyka kwantowa jeszcze nie całkiem wyszła z powijaków, to jej zastosowaniom można wróżyć świetlaną przyszłość. Ale nawet pomijając zastosowania praktyczne i technologie przyszłości, samo zrozumienie znaczenia splątania jako fundamentalnej cechy rzeczywistości zasługuje na wyróżnienie wśród osiągnięć fizyki współczesnej.

Lektura uzupełniająca

Co siedzi wewnątrz protonu (i często sprawia badaczom niespodzianki)

https://cerncourier.com/a/the-proton-laid-bare/

https://www.nature.com/articles/s41586-021-03282-z

Za co przyznano Noble z fizyki w roku 2022

https://www.nobelprize.org/prizes/physics/2022/press-release/