Zgodnie z obietnicą, druga część atomowych rekordów Guinnessa.
Najmniejsza zważona masa
Technika pomiaru masy (masy, nie ciężaru) ultramałych obiektów polega na pomiarze zmiany częstotliwości drgań mikrowspornika obciążanego badanym obiektem. Niestety nie nadaje się do ważenia obiektów żywych, komórek, bakterii, wirusów, ponieważ ważenie odbywa się w próżni. A właśnie biologia jest dziedziną, w której pomiary masy nanoobiektów są najbardziej pożądane. Z kronikarskiego obowiązku odnotuję więc, że naukowcy z Cornell University pod kierownictwem Harolda Craigheada zarejestrowali w 2004 roku masę 6 attogramów (1 attogram to 10-18 grama) wspomnianą metodą pomiaru zmiany częstotliwości wibracji wspornika po dodaniu mierzonej masy. Wymiary wspornika też są imponujące: 4 mikrometry na 500 nanometrów. Wibrację są wzbudzane laserowo lub za pomocą pola elektromagnetycznego. Pomiaru dokonuje się laserowo, obserwując światło odbite od wspornika (trampoliny). Minimalna, teoretycznie rozpoznawalna przez ten przyrząd masa wynosi 0,37 attograma. Dalsze udoskonalenia tej metody pozwalają mierzyć masy rzędu zeptogramów (10-21 grama).
Jak wspomniałem, technika ta nie pozwala ważyć obiektów żywych. Naukowcy z MIT opracowali więc w 2007 roku metodę opartą również na zmianie częstotliwości drgań, ale drgająca płytka została dodatkowo wyposażona w kanalik wypełniony płynem, którym przepływają bakterie, komórki, a nawet wirusy. Jest to bardzo obiecująca metoda, umożliwiająca przeprowadzenie wartościowych pomiarów, na przykład w cytometrii przepływowej. Kierownik tego projektu – Scott Manalis napisał: “„…ważenie nanocząstek lub pojedynczych biomolekuł w roztworze z rozdzielczością, która jest o sześć rzędów wielkości bardziej czuła niż w tradycyjnych detektorach masy. Jednym z kierunków, do których dążymy, jest cytometria przepływowa oparta na pomiarze masy przepływających komórek”.
Konkretnym zastosowaniem tej techniki jest zbudowanie urządzenia działającego jak cytometr przepływowy do badania liczby komórek odpornościowych CD4 u chorych na AIDS, przekładającego się na ocenę zaawansowania choroby. Tradycyjne cytometry są duże i drogie i nie nadają się do stosowania w krajach rozwijających się, gdzie problem AIDS jest znaczący. Innym potencjalnym zastosowaniem tej metody jest pomiar wielkości nanokulek używanych w przemyśle farb, nowoczesnych lekach lub przemyśle materiałów nanokompozytowych. [2]
Najszybciej obracający się obiekt
Wydawałoby się, że rekordowa liczba obrotów nie ma większego znaczenia naukowego. Mamy wiertarki szybkoobrotowe, silniki osiągające 10000 obrotów na minutę. Po co komu obiekt materialny obracający się z prędkością 300 miliardów obrotów na minutę? Taką właśnie prędkość obrotową nadali naukowcy z Purdue University pojedynczej nanocząstce. Dokonano tego za pomocą lasera, który “rozkręcił” krzemionkowe nanohantle do tej zawrotnej prędkości. Prędkość obrotowa i czułość obracającej się nanocząstki na moment obrotowy jest sednem naukowego zastosowania takiego układu fizycznego. Nie muszę dodawać, że rekord został pobity w próżni. Ale co to jest próżnia? Czy to tylko brak powietrza? Jest to tak zwana próżnia elektromagnetyczna, czyli brak ośrodka, który może spowolnić światło. Innym rodzajem próżni jest próżnia grawitacyjna, czyli brak jakiejkolwiek materii czy energii zdolnej do zaginania przestrzeni. Tej niestety nie potrafimy wytworzyć, nawet jej do końca nie rozumiemy, możemy więc tylko badać próżnię elektromagnetyczną. Czy w takiej próżni występuje tarcie? Teoretycznie tak, istnieje tarcie próżniowe spowodowane elektromagnetyzmem cząstek kwantowych, ale do tej pory nie udało się tego udowodnić doświadczalnie. Autorzy opisywanego eksperymentu twierdzą, że przy prędkości obrotowej 1 GHz tarcie próżniowe będzie wystarczająco duże a czułość wystarczająco wysoka, aby można było je zmierzyć.
Tu mała dygresja na temat pomiaru momentu obrotowego i jego czułości. Przy okazji – powtórka z fizyki (jakże lubimy niezapowiedziane kartkówki). Wartość stałej grawitacyjnej G wyznaczył pod koniec XVIII wieku (1798 rok) Henry Cavendish. Było to jak na owe czasy nie lada osiągnięcie, gdyż wartość tej stałej wynosi 6,67×10-11 niutona czyli baardzo mało. Cavendish zrobił to mierząc moment obrotowy za pomocą tzw. wagi skręceń. Na nici kwarcowej zawiesił poziomo pręt z dwiema małymi kulkami na jego końcach. Do kulek tych zbliżał z obu stron dwie duże kule ołowiane. Siły przyciągania kul skręcały nić kwarcową o pewien kąt, który Cavendish zmierzył za pomocą promienia światła odbitego od lusterka przymocowanego do nici.
Na koniec naj, naj, największe osiągnięcie naukowe wszech czasów
Mowa o artykule naukowym, który pobił rekord największej liczby autorów. Liczba autorów pierwszego wspólnego artykułu dwóch zespołów pracujących z detektorami ATLAS i CMC w Wielkim Zderzaczu Hadronów wynosi 5154. 33-stronicowy artykuł w Physical Review Letters z 14 maja 2015 składa się z 9 stron treści opisującej badanie i 24 stron listy autorów i ich macierzystych instytucji. Tematem badania było dokładniejsze oszacowanie masy bozonu Higgsa.
Kolaboracja współautorska jest dynamicznie rozwijającą się dziedziną nauki. Artykuł w Nature na temat rozpadu rzadkich cząstek miał ponad 2700 autorów, artykuły na temat genomiki często mają ponad 1000 autorów. Blaise Cronin, naukowiec z Indiana University Bloomington nazwał to zjawisko hiperautorstwem. Pierwszy artykuł opisujący obserwacje bozonu Higgsa z 2012 roku miał 2932 autorów (z których 21 uznano za zmarłych). Artykuł opublikowany w 2008 roku na temat eksperymentu CMS w LHC, stał się pierwszym artykułem, który znalazł się na ekskluzywnej “liście 3000”.
Trochę szkoda, że rekordy w tej dziedzinie są bite tylko w renomowanych światowych instytucjach badawczych. Nasze krajowe podwórko jest otwarte dla tego typu inicjatyw, które w dodatku są niskokosztowe. Wystarczy nieco dobrej woli szefa projektu, aby zespół rozrósł się z kilku do nawet paruset osób. Jasne jest jednak, że o tysiącach nie mamy co marzyć, na taką ekstrawagancję mogą sobie pozwolić tylko uniwersytety z czołówki Listy Szanghajskiej i, co oczywiste, inicjatywy ponadnarodowe w rodzaju LHC.
Źródła: