„Na dole jest mnóstwo miejsca”. Tak brzmiała myśl przewodnia wykładu Richarda Feynmana na spotkaniu Amerykańskiego Towarzystwa Fizycznego 29 grudnia 1959 r. Jest to zarazem umowna data narodzin nanotechnologii. Wykład Feynmana zawierał w zasadzie wszystkie koncepcje nanotechnologii rozwijane współcześnie:
Coraz gęstsze obwody komputerowe. Stało się to widoczne od czasu zdefiniowania przez Gordona Moore’a w 1965 „prawa” mówiącego, że ekonomicznie optymalna liczba tranzystorów w układzie scalonym zwiększa się w kolejnych latach wykładniczo. Wykładnik Moore’a wynosił 1,5, obecnie jest skorygowany do 2, ale prawo Moore’a nadal obowiązuje.
Jeszcze dokładniejsza mikroskopia. W latach 50. szczytem techniki mikroskopowej były skaningowe mikroskopy elektronowe (od 1935 roku). W międzyczasie powstały wielokrotnie dokładniejsze mikroskopy: mikroskop tunelowy, mikroskop sił atomowych, mikroskop z sondą skanującą.
Nanomaszyny „układające atomy tak, jak chcemy” i dokonujące syntezy chemicznej poprzez mechaniczną manipulację atomami.
Nanoroboty medyczne. Feynman przedstawił koncepcję „połknięcia lekarza” w postaci nanorobota chirurgicznego.
Nowe materiały do produkcji elektroniki w nanoskali: szkło i plastik. Obecną realizacją tej wizji są światłowody (szkło) i polimerowe tranzystory polowe.
Wykład miał miejsce w 1959 roku i przez następne 20-30 lat nie wywierał praktycznie żadnego wpływu na rozwój technologiczny, który musiał „dogonić” wizję Feynmana. Dopiero na początku lat 90. XX. wieku nanotechnologia zaczęła coraz śmielej wypełniać niszę naukową zapowiedzianą przez genialnego fizyka. Termin „nanotechnologia” został pierwszy raz użyty przez Japończyka Norio Taniguchi w 1974 r. w celu opisania precyzyjnego wytwarzania materiałów z tolerancjami nanometrowymi.
W 1985 roku Thomas Newman z Uniwersytetu Stanforda odtworzył pierwszą stronę „Opowieści o dwóch miastach” Charlesa Dickensa, stosując litografię wiązką elektronów. Otrzymał za to osiągnięcie Nagrodę Feynmana, wyznaczoną w 1959 za stworzenie tekstu pisanego w skali 1/25 000.
Przełomowy okazał się słynny eksperyment Eiglera-Schweizera, precyzyjnie manipulujący 35 atomami ksenonu, opisany w Nature w 1990 r.
Ciekawostka (a nawet dwie)
W 2016 roku grupa badaczy z TU Delft ogłosiła, że zapisała binarnie jeden z akapitów przemówienia Feynmana umieszczając atomy chloru na podłożu z atomów miedzi, wykorzystując do manipulowania atomami skaningowy mikroskop tunelowy. Każdy atom chloru może znajdować się w dwóch pozycjach: jeśli znajduje się na dolnym atomie miedzi, jest to „0”; jeśli znajduje się na najwyższym atomie, to jest to „1” (Ryc. 1). Poniżej treść tego akapitu (tłumaczenie), będącego w istocie manifestem nanotechnologii:
Ale nie boję się rozważyć ostatniego pytania, czy ostatecznie – w wielkiej przyszłości – będziemy mogli ułożyć atomy tak, jak chcemy; same atomy, aż do samego dołu! Co by się stało, gdybyśmy mogli ułożyć atomy jeden po drugim tak, jak chcemy (oczywiście w granicach rozsądku; nie można ich ułożyć tak, aby były na przykład niestabilne chemicznie). Do tej pory zadowalaliśmy się kopaniem w ziemi w poszukiwaniu minerałów. Podgrzewamy je i robimy z nimi różne rzeczy na dużą skalę, mając nadzieję, że otrzymamy czystą substancję z taką ilością zanieczyszczeń i tak dalej. Ale zawsze musimy zaakceptować jakiś układ atomowy, jaki daje nam natura. Nie mamy niczego, powiedzmy, w układzie „szachownicy”, z atomami zanieczyszczeń precyzyjnie rozmieszczonymi w odległości 1000 angstremów lub w jakimś innym szczególnym układzie.
Do zapisania tekstu wykorzystano dokładnie jeden kikibajt informacji (8192 bity). Skala miniaturyzacji zapisu jest taka, że „wszystkie książki świata” można zapisać na powierzchni znaczka pocztowego (teoretycznie).
Zapewne większość z Was zapyta teraz „co to jest, ten kikibajt?”. Kikibajt to 210 bajtów czyli dokładnie 1024. „Ale przecież to jest kilobajt!” – odpowiecie. Nie, kilobajt to 1000 bajtów. Właśnie dlatego IEC, czyli International Electrotechnical Commission, czyli towarzystwo terminologicznych purystów, międzynarodowa organizacja normalizacyjna, która przygotowuje i publikuje normy dotyczące elementów elektrycznych i elektronicznych, utworzyła taki termin. Zainteresowanych odsyłam do [1].
Nagroda Feynmana
Tak jak napisałem wcześniej, dopiero w latach 90. XX wieku nanotechnologia stała się uznaną dziedziną nauki. Duża w tym zasługa Kima Erica Drexlera, którego praca doktorska „Nanosystems: Molecular Machinery Manufacturing and Computation” z 1991 roku otrzymała nagrodę Association of American Publishers za najlepszą książkę o informatyce. Wcześniejsza książka Drexlera Engines of Creation: The Coming Era of Nanotechnology to wizjonerskie dzieło, mądre i inspirujące. Autor przedstawia w nim maszyny budujące „atom po atomie” oraz inne pomysły Feynmana z roku 1959, widziane oczami inżyniera 30 lat później. Niewątpliwie książka ta, wielokrotnie wznawiana i aktualizowana, była (i jest) ogromnym inspirującym bodźcem dla badaczy. Tenże Drexler założył instytut badawczy nanotechnologii Foresight Institute, który ustanowił nagrodę Feynmana. To prestiżowe wyróżnienie było przyznawane od 1993 roku, początkowo co dwa lata, a od 1997 roku corocznie, w dwóch kategoriach: teoretycznej i eksperymentalnej. Przeglądając listę wyróżnień z ostatnich 25 lat [4] możemy znaleźć co najmniej kilka rewolucyjnych i przyszłościowych rozwiązań (w kategorii eksperymentalnej) takich jak: nanorurki węglowe, silniki molekularne, mikroskopy do manipulacji atomami i cząsteczkami, tranzystory jednoatomowe, nanotechnologia DNA.
Oprócz dorocznych nagród, instytut Foresight sformułował wymagania do dwóch Wielkich Nagród Feynmana:
1. Zaprojektowanie i skonstruowanie ramienia robota, które mieści się w sześcianie o wymiarach nie większych niż 100 nanometrów. Ideą tej nagrody jest przyspieszenie prac nad manipulowaniem pojedynczymi atomami lub cząsteczkami i łączenia ich w większe struktury z atomową precyzją.
2. Zaprojektowanie i skonstruowanie komputera mieszczącego się w sześcianie o wymiarze nie większym niż 50 nanometrów. Komputer ten powinien poprawnie dodać dowolną parę 8-bitowych liczb binarnych, odrzucając przepełnienie.
Nagrody nie zostały jeszcze (i długo nie będą) przyznane, ale ich wysokość (milion dolarów) z pewnością zmotywuje wiele zespołów, dając tym samym impuls do szybszego rozwoju nanotechnologii.
Nagrody Nobla związane z nanotechnologią
Nagrody Nobla z fizyki są od lat zdominowane przez tematy ekstremalne na pograniczu science i fiction. Oprócz pewniaków, czyli czarnych dziur, egzoplanet, fal grawitacyjnych czy neutrin, także nanotechnologia coraz śmielej zdobywa przychylność Komitetu Noblowskiego. I to zarówno w dziedzinie fizyki jak i chemii. Niestety, Alfred Nobel ustanawiając nagrodę, nie przewidział (ponad 120 lat temu), że za sto lat chemia (a przynajmniej pewne jej obszary) zostanie wchłonięta przez fizykę. Z tego powodu jeden z postulatów manifestu Feynmana, ten o nanomaszynach „układających atomy tak, jak chcemy”, dotyczy obu dziedzin.
W ciągu ostatnich dwudziestu lat kilka nagród Nobla zostało przyznanych za osiągnięcia dotyczące nanotechnologii sensu stricte. Przedstawię pokrótce trzy z nich, mam nadzieję, że reprezentatywnie pokazujące perspektywiczne kierunki badań.
Nagroda Nobla z fizyki 2023
Anne L’Huillier, Pierre Agostini i Ferenc Krausz
Nagroda została przyznana za opracowanie metody wytwarzania ultrakrótkich, attosekundowych (10-18s) impulsów światła, pozwalających na badanie struktury wewnętrznej atomów, w tym (a może przede wszystkim) obserwacji i rejestracji ruchu elektronów. Dotychczas dostępne impulsy femtosekundowe (10-15s) nie umożliwiały rejestracji ruchu a jedynie obserwacje i pomiary zachowania elektronów na zasadzie uśredniania. Z tego powodu osiągnięcie można uznać za przełomowe. Jako ciekawostkę i ilustrację, co znaczy atto-ułamek wystarczy powiedzieć, że attosekunda jest tak krótka, że ich liczba w ciągu jednej sekundy jest równa liczbie sekund, które upłynęły od powstania Wszechświata, czyli 13,8 miliarda lat temu.
Nagroda Nobla z chemii 2016
Jean Pierre Sauvage, Sir J. Fraser Stoddart, Bernard Lucas Feringa
„Za projektowanie i syntezę maszyn molekularnych”.
Wszystko zaczęło się od pracy Jeana Pierre’a Sauvage’a na temat katenanów (splecionych struktur podwójnych lub potrójnych pierścieni) i J.Frasera Stoddarta nad rotaksanami (cząsteczka w kształcie hantla połączona z makrocząsteczką w kształcie pierścienia). Utorowała ona drogę do rozwoju przełączników molekularnych i silników molekularnych. Zespół Bernarda Feringa zaprojektował nano-samochód, syntetycznie skonstruowaną cząsteczkę, która ma korpus i cztery koła (struktury molekularne przypominające koła prawdziwego samochodu). Taki samochód może się poruszać ruchem kroczącym, na podobieństwo białek kinezynowych na włóknach aktynowych. Przyszłe wykorzystanie może polegać na transporcie ładunków wielkości molekularnej (na przykład leków) do docelowej lokalizacji, na przykład komórki nowotworowej. Innym zastosowaniem, bardzo na czasie, jest precyzyjny transport zmodyfikowanych antybiotyków. Modyfikacja polegałaby na umożliwieniu włączania aktywności antybiotyku dopiero po dotarciu do celu. Pomogłoby to w walce z coraz bardziej powszechnym problemem antybiotykoopornych bakterii.
Nagroda Nobla z fizyki 2007
Peter Gruenberg i Francuz Albert Fert
“Za odkrycie zjawiska gigantycznej magnetorezystancji”
Pod takim, dość hermetycznym, opisem kryją się zastosowania, bez których nie byłby możliwy tak ogromny rozwój dysków twardych, używanych m.in. w odtwarzaczach MP3. To właśnie odkrycie jest jednym z pierwszych praktycznych zastosowań nanotechnologii.
Na czym polega istota odkrycia? Połączenie cienkich warstw materiałów magnetycznych i niemagnetycznych tworzy materiał, który przy braku pola magnetyczne ma wysoką oporność elektryczną. Oporność maleje jednak znacznie w obecności pola magnetycznego. Aby jednak zjawisko Giant Magnetoresistance (GMR) wystąpiło, grubości poszczególnych warstw magnetycznych i niemagnetycznych powinny być rzędu atomów. Powstał więc problem opracowania technologii umożliwiającej produkcję na skalę przemysłową. Metoda stosowana przez Grünberga i Ferta (epitaksja) była pracochłonna i kosztowna, lepiej nadawała się do laboratorium badawczego niż do procesu technologicznego. Stuart Parkin, Anglik pracujący w Stanach Zjednoczonych, udowodnił, że podobny efekt można osiągnąć przy użyciu znacznie prostszej technologii – napylania. Od tego czasu wydarzenia potoczyły się błyskawicznie, wkrótce na rynek trafiły pierwsze głowice dysków twardych stosujące nową technologię GMR, zastępując dotychczas stosowane głowice MR, zwłaszcza dla wielkich pojemności.
Refleksja końcowa
Nagrody Nobla są przyznawane, zdarza się, że parędziesiąt lat po dokonaniu odkrycia. Nie inaczej jest z nanotechnologią. Zjawisko GMR zostało odkryte w 1997 roku, a Nagroda Nobla została przyznana dopiero 20 lat później. Prace Anne L’Huillier pochodzą z 1997 roku, a Pierre Agostini i Ferenc Krausz dokonali swoich odkryć w 2001. Otrzymali za to Nobla w 2023 roku. Prace Sauvage’a, Stoddarta i Feringa pochodzą z przełomu wieków, Nobla zaś otrzymali w 2016.
Dwadzieścia lat to w rozwoju nauki i technologii epoka. Boję się myśleć, jakie współcześnie opracowywane (i trzymane w tajemnicy) nanotechnologie zostaną uhonorowane Noblem za 10-20 lat.
Źródła:
1. https://www.logicmonitor.com/blog/what-the-hell-is-a-kibibyte
2. https://www.nature.com/articles/344524a0
3. https://www.newscientist.com/gallery/dn16474-tiny-letters/
4. https://en.wikipedia.org/wiki/Feynman_Prize_in_Nanotechnology
5. https://www.molecularcloud.org/p/nobel-prize-in-the-field-of-nanotechnology
6. https://www.nobelprize.org/prizes/physics/2023/popular-information/