Azot jako gaz życia, czyli co może dać symbioza. Część 1: Porosty

Inne wpisy z tej serii:
Część 2: Rośliny i ich mali przyjaciele
Część 3: I znów endosymbioza

Patrz też:
Organizmy mało znane: Porosty
Gwiezdna galareta i kamień filozoficzny

Wstęp: make love, not war

Zwykle myślimy o ewolucji w kategoriach konkurencji: dwie formy życia rywalizują o te same zasoby środowiska; lepiej przystosowana zyskuje, a gorzej przystosowana traci. Ale dobór naturalny może premiować nie tylko te cechy dziedziczne, dzięki którym organizmy odnoszą sukces reprodukcyjny kosztem innych, lecz także takie, które skłaniają swoich nosicieli do współpracy przynoszącej zysk przystosowawczy obu stronom. Dlatego istnieją organizmy społeczne (współpracujące w ramach jednego gatunku) i cała paleta odcieni symbiozy, czyli związku dwóch lub więcej gatunków opartego na wymianie usług zapewniającej wzajemną korzyść.

Częstym partnerem w związkach symbiotycznych są cyjanobakterie, zwane też sinicami – grupa bakterii, której poświęciłem kiedyś osobny wpis. Cyjanobakterie dokonały jednego z najważniejszych wynalazków w historii życia na Ziemi: zaawansowanej fotosyntezy, wykorzystującej energię fotonów światła słonecznego do wytwarzania związków organicznych z wody i dwutlenku węgla. W bardzo dawnej przeszłości – około dwóch miliardów lat temu – cyjanobakterie spokrewnione ze współczesnym rodzajem Gloeomargarita stały się endosymbiontami (symbiontami wewnątrzkomórkowymi) wspólnego przodka grupy Archaeplastida, do której należą – obok zielenic, krasnorostów i glaukofitów – wszystkie rośliny lądowe. Endosymbioza jest związkiem tak ścisłym, że może doprowadzić do zaniku odrębności partnerów. Cyjanobakterie wewnątrz komórki gospodarza utraciły zdolność do niezależnej egzystencji i przekształciły się w plastydy – organella odpowiedzialne za przeprowadzanie fotosyntezy (czyli między innymi roślinne chloroplasty). Pamiątką ich pochodzenia jest posiadanie własnego genomu, co prawda bardzo zubożonego, bo większość DNA plastydów została przeniesiona do jądra komórki gospodarza.

Dzięki kolejnym rundom endosymbiozy, w których rolę wewnątrzkomórkowych partnerów odgrywały zielenice lub krasnorosty, zdolność do fotosyntezy uzyskały rozmaite inne grupy organizmów: klejnotki, bruzdnice, brunatnice, okrzemki, złotowiciowce, haptofity, ochrofity itp. Należą one do różnych gałęzi ogromnego drzewa rodowego eukariontów (organizmów wyposażonych w jądro komórkowe), ale jeśli prześledzić historię ewolucyjną ich zdolności do fotosyntezy, zawsze prowadzi ona ostatecznie do cyjanobakteryjnego wspólnego przodka „baterii słonecznych” umożliwiających wiązanie węgla z zawartego w atmosferze CO2.

Współpraca eukariontów z sinicami nie była ani pierwszym, ani ostatnim przypadkiem endosymbiozy. Już wcześniej przedstawiciel innej grupy prokariontów, alfaproteobakterii, zintegrował się z komórką wspólnego przodka eukariontów, dając początek mitochondriom – organellom odpowiedzialnym za oddychanie komórkowe i syntezę adenozynotrójfosforanu (ATP), nośnika energii wykorzystywanej w procesach metabolicznych. Wizjonerską hipotezę o bakteryjnym pochodzeniu zarówno mitochondriów, jak i plastydów, początkowo odrzucaną przez większość badaczy, zaproponowała w 1966 r. Lynn Margulis. Była ona przez całe życie badaczką ekscentryczną i wiele z propagowanych przez nią poglądów wzbudzało uzasadnioną krytykę; niemniej jednak zapoczątkowana przez nią teoria endosymbiozy nie tylko została po latach potwierdzona i powszechnie zaakceptowana, ale zrewolucjonizowała zrozumienie kilku przełomowych wydarzeń w historii życia na Ziemi.

Chciałbym na kilku przykładach pokazać, jak wygląda droga od luźnej symbiozy do nierozerwalnego związku, którego ukoronowaniem jest zintegrowanie komórek gospodarza i jego symbiotycznego partnera. Skupię się na przypadkach, gdy symbiontem jest cyjanobakteria. Gospodarzami zaś będą kolejno: grzyby, rośliny i mało znane organizmy takie jak haptofity (czym są haptofity, wyjaśnię we właściwym czasie).

Pawężnice i ich partnerzy strategiczni

Pawężnica (Peltigera) to rodzaj grzybów należący do gromady workowców (Ascomycota), a w jej obrębie do klasy miseczniaków (Lecanoromycetes). Miseczniaki są grupą wielką: wśród wszystkich klas grzybów zajmują trzecie miejsce pod względem liczebności; opisano dotąd ok. 14 tys. gatunków, przy czym liczba ta stale rośnie i niewątpliwie długo jeszcze będzie rosła w miarę postępu badań. Około 95% miseczniaków to grzyby porostowe. Czym są porosty, pisałem już przy innych okazjach (na przykład tutaj i tutaj), tu przypomnę tylko krótko: porost to układ symbiotyczny, w którym głównym partnerem (gospodarzem) jest grzyb, a pozostali partnerzy są mikroorganizmami, z których przynajmniej jeden, zwany fotobiontem, uprawia fotosyntezę. Zapewnia to porostom samożywność: fotobiont produkuje cukry, którymi odżywia się grzyb. Gospodarz w zamian oferuje partnerowi komfortowe warunki życia: strzępki grzyba tworzą plechę, która osłania kolonie fotobionta, chroniąc je np. przed kaprysami pogody i nadmiarem promieniowania słonecznego (zwłaszcza w zakresie nadfioletu) oraz ułatwiając im zaopatrzenie w mineralne składniki odżywcze. Najczęściej fotobiontem jest któraś z jednokomórkowych zielenic żyjących w środowiskach lądowych, ale drugą najpopularniejszą opcją jest korzystanie z usług cyjanobakterii.

Ryc. 1.

Rodzaj Peltigera obejmuje około 90 opisanych i nazwanych gatunków, sporą liczbę gatunków wstępnie rozpoznanych na podstawie badań molekularnych, choć jeszcze nieuznanych formalnie, i z pewnością wiele takich, które dopiero czekają na odkrycie. W Polsce, według oficjalnego wykazu, występuje 21 gatunków pawężnic (w mojej najbliższej okolicy znalazłem dotąd trzy). Mają one charakterystyczny wygląd: ich duża plecha składa się z szerokich, listkowatych odcinków przylegających do podłoża, często tworzących okrągłe rozety. Pawężnice mogą rosnąć – w zależności od gatunku – na ziemi lub na mchu, rzadziej na skale lub na korze drzew, a w kilku przypadkach nawet na kamieniach zanurzonych w strumieniu. Wspólny przodek całego rodzaju żył kilkadziesiąt milionów lat temu, a jego fotobiontem było już wtedy trzęsidło (Nostoc sp.), pospolita cyjanobakteria, którą, o dziwo, dobrze widać gołym okiem, bo tworzy na wilgotnym gruncie duże kolonie. W obrębie kolonii komórki trzęsidła układają się w długie nici (patrz ryc. 2), otoczone żelowatą pochwą zbudowaną z wydzielanych przez bakterie polisacharydów. I tu uwaga: oprócz zwykłych, niezróżnicowanych komórek bakteryjnych kolonia zawiera także wyspecjalizowane komórki przetrwalnikowe i tzw. heterocysty, czyli komórki pozbawione zdolności do fotosyntezy, ale za to ujawniające inną supermoc: umiejętność wiązania azotu atmosferycznego (N2) i przekształcania go w amoniak (NH3).

Dlaczego jest to ważne? Bo cząsteczkowy azot jest w normalnych warunkach gazem niemal obojętnym chemicznie. Dwa atomy tworzące cząsteczkę N2 połączone są potrójnym wiązaniem kowalencyjnym (N≡N), współdzieląc sześć elektronów. Takie wiązanie jest wyjątkowo silne, zatem niełatwo je rozerwać. Mogą w tym pomóc enzymy z rodziny nitrogenaz, katalizujące reakcję przemiany azotu cząsteczkowego w amoniak. Jest to proces redukcji, o korzystnym bilansie energii, nie zachodzi jednak samoistnie, bo na przeszkodzie stoi bardzo wysoka energia aktywacji (wynikająca z siły wiązania N≡N). Obecność enzymu obniża tę barierę, dzięki czemu reakcja może zachodzić w zwykłym zakresie temperatur i ciśnień. A ponieważ amoniak jest aktywny chemicznie, może być następnie wykorzystany w szlakach syntezy złożonych związków organicznych. Nitrogenazy to kompleksy kilku białek z udziałem kofaktora zawierającego żelazo i molibden, rzadziej wanad. Potrafią je syntetyzować tylko niektóre bakterie i archeowce. Enzymy te umożliwiają swoim posiadaczom pozyskiwanie azotu wprost ze wszechobecnego źródła – atmosfery Ziemi, zawierającej objętościowo 78% N2.1

Dawną francuską nazwę azote (zapożyczoną do języka polskiego jako azot) utworzył Antoine Lavoisier, inspirując się greckim przymiotnikiem ázōtos ‘uniemożliwiający życie’. To prawda, że azotem nie da się oddychać, nazwa nie była jednak zbyt trafna, bo azot jest jednym z najważniejszych pierwiastków umożliwiających życie – o czym w czasach Lavoisiera jeszcze nie wiedziano. Wchodzi on w skład wszystkich bez wyjątku aminokwasów, czyli cegiełek, z których zbudowane są białka, wszystkich nukleotydów, czyli podstawowych składników DNA i RNA, a także wspomnianego wyżej ATP i wielu innych ważnych związków. Ciało ludzkie zawiera średnio prawie 2 kg azotu. Dostaje się on do obiegu biologicznego częściowo dzięki wyładowaniom elektrycznym podczas burz. Ich energia umożliwia zerwanie potrójnego wiązania w cząsteczce N2 i reakcję atomowego azotu z tlenem. Powstają w ten sposób tlenki azotu i jony azotanowe, które dostają się do gleby i mogą być przyswajane przez rośliny czy grzyby, a za ich pośrednictwem trafiają do łańcucha pokarmowego zwierząt. Ale wielokrotnie więcej azotu trafia do biosfery dzięki bakteriom i archeowcom wyposażonym w nitrogenazy. Są one głównymi dostawcami związków azotu przyswajanych przez inne istoty żywe. A kto potrafi się z nimi zaprzyjaźnić, uzyskuje uprzywilejowany dostęp do azotu.

Symbiotyczne cyjanobakterie hodowane przez pawężnicę wewnątrz plechy nie tylko dostarczają gospodarzowi produktów fotosyntezy (cukrów), ale ponadto, dzięki heterocystom wchodzącym w skład ich kolonii, są źródłem przyswajalnych związków azotu pobieranego wprost z powietrza. Trzeba tu zauważyć, że związek grzybów porostowych z fotobiontami jest stosunkowo luźny. Nie jest to endosymbioza, tylko partnerstwo dwóch lub więcej organizmów zachowujących swoją autonomię. W ewolucji porostów zdarzały się wielokrotnie przypadki rezygnacji z fotobionta i powrotu do charakterystycznej dla grzybów cudzożywności. Zdarzała się też wymiana fotobionta na „nowszy model”.

Zmiana partnera, choć nie do końca

Grzyby porostowe, jak przystało na członków królestwa Fungi, mają skomplikowane cykle reprodukcyjne. Mogą się rozmnażać płciowo za pomocą zarodników albo wegetatywnie za pomocą specjalnych rozmnóżek, zwanych (w zależności od formy) sorediami (urwistkami) lub izydiami (wyrostkami). Zarodniki zawierają wyłącznie DNA grzyba, natomiast rozmnóżki to małe „pakiety startowe”, złożone z komórek symbionta w opakowaniu ochronnym utworzonym przez tkankę grzyba. Jeśli trafią na odpowiednie podłoże, rozwija się z nich klonalna kopia grzyba rodzicielskiego współpracująca z tym samym symbiontem. Innymi słowy – rozmnażanie bezpłciowe sprzyja utrzymaniu ścisłego związku z konkretnym partnerem. Natomiast młody grzyb rozwijający się z zarodników (w przypadku grzybów porostowych jest to proces wciąż słabo zbadany) musi znaleźć w swoim środowisku właściwego fotobionta i zachęcić go do współpracy. Może się przy tym zdarzyć, że udaje się wejść w związek symbiotyczny ze szczepem lub gatunkiem mikroorganizmu innym niż ten, z którym współpracowały wcześniejsze pokolenia. Na przykład pewna grupa blisko z sobą spokrewnionych gatunków pawężnic zrezygnowała z usług cyjanobakterii jako głównego partnera fotosyntetyzującego i przyjęła na jej miejsce zielenicę z rodzaju Coccomyxa.

Ryc. 2.

Zapewne zielenica dobrze się sprawdza jako fotobiont, ale jednego nie potrafi: wiązać azotu atmosferycznego. Tymczasem pawężnice uzależniły się od zdolności, która pozwala im kolonizować podłoża ubogie w związki azotu, na przykład nagie skały, nieurodzajne gleby piaszczyste i wydmy, a jednocześnie czyni z nich jedne z najszybciej rosnących porostów.2 Dlatego pawężnice, które dokonały wymiany, nie pozwoliły sobie na całkowite odrzucenie cyjanobakterii. Górna powierzchnia ich plechy usiana jest brodawkowatymi strukturami, tzw. cefalodiami, w których żyją kolonie sinicy, odgrywając rolę trzeciego partnera układu symbiotycznego (Peltigera/Coccomyxa/Nostoc). Ich zadaniem jest zaopatrywać cały układ w przyswajalny azot, podczas gdy fotosyntezę (czyli wiązanie węgla z CO2) bierze na siebie zielenica.

Jak dowodzą badania filogenomiczne, pawężnica jabłkowata (P. malacea) należy do kladu, którego wspólny przodek zastąpił cyjanobakterie zielenicami. Jednak gatunek ten nie ma cefalodiów, a jego plecha zawiera cyjanobakterie Nostoc. Jest to szczep inny niż te, które występują w cefalodiach najbliższych kuzynów P. malacea, ale blisko z nimi spokrewniony. Wygląda więc na to, że pawężnica jabłkowata zmieniła zdanie: pozbyła się zielenic i zastąpiła je cyjanobakteriami zachowanymi w cefalodiach. Oczywiście ponieważ sinice wiążą zarówno węgiel, jak i azot, cefalodia stały się zbędne i P. malacea utraciła je wtórnie, upodabniając się do większości pawężnic − tych, które nigdy nie zawierały związku z zielenicami. Gdyby nie dane molekularne, nie bylibyśmy świadomi jej bliskiego pokrewieństwa np. z pawężnicą brodawkowatą (P. aphthosa) o powierzchni jasnozielonej, gdy jest mokra, i nakrapianej cefalodiami (patrz ryc. 3), co świadczy o przynależności do porostów „trójskładnikowych”.3

O tym, że symbioza jest dobrym sposobem na życie, świadczy sukces ewolucyjny organizmów, które ją uprawiają. Szacuje się, że około jedna piąta gatunków grzybów tworzy porosty, a zatem korzysta z dobrodziejstw fotosyntezy dzięki uprzejmości symbiotycznych mikroorganizmów. Spośród nich ok. 10% wykorzystuje sinice jako fotobionty, ma zatem potencjalną zdolność do asymilacji azotu cząsteczkowego. Można więc stwierdzić bez wielkiej przesady, że dzięki symbiozie grzyby porostowe takie jak pawężnice mogą się odżywiać powietrzem, a przy okazji odgrywać ważną rolę ekologiczną jako pośrednicy wprowadzający azot do obiegu w świecie żywym.

Apetyt na azot

Prócz sinic także inne bakterie potrafią wiązać azot z atmosfery. Każdy, kto uważał na lekcjach biologii, powinien wiedzieć, że niemal wszystkie rośliny bobowate (Fabaceae), zwane też motylkowatymi, posiadają brodawki korzeniowe zawierające bakterie azotowe (wiele różnych rodzajów należących do różnych grup systematycznych). Bakterie te nie tylko zaopatrują swojego gospodarza w przyswajalne związki azotu, ale zasilają nimi także ziemię wokół korzeni. Dzięki temu bobowate są szeroko wykorzystywane jako „żywy nawóz” do użyźniania wyjałowionej gleby. Rodzina Fabaceae obejmuje ok. 20 tys. gatunków, co dobitnie świadczy o korzyściach z „samonawożenia”. Bakterie tworzące brodawki korzeniowe bobowatych (a także niektórych innych roślin okrytonasiennych) nie mają zdolności do fotosyntezy, ale ma ją roślina będąca ich gospodarzem. Może ona dzięki temu dokarmiać swoje korzeniowe symbionty związkami węgla, które sama syntetyzuje – notabene dzięki chloroplastom pochodzącym od pradawnych cyjanobakterii.

W kolejnym odcinku przyjrzymy się bliskiej współpracy sinic – nie tych sprzed dwóch miliardów lat, ale tych, które istnieją nadal jako odrębne organizmy – z niektórymi roślinami. Wskutek osobliwego zbiegu okoliczności skutki tej współpracy odczuła cała planeta.

Przypisy

  1. Azot cząsteczkowy i wodór cząsteczkowy można połączyć w amoniak metodą opracowaną w laboratorium przez Fritza Habera w 1909 r. i udoskonaloną oraz rozwiniętą w proces przemysłowy przez Carla Boscha kilka lat później. Na metodzie Habera i Boscha opiera się współczesna produkcja nawozów sztucznych, prowadzona na ogromną skalę. Aby jednak reakcja połączenia azotu z wodorem mogła zajść, potrzebne jest ciśnienie ok. 200 atm, obecność katalizatora (zwykle jest to specjalnie spreparowane czyste żelazo z dodatkiem promotorów zwiększających jego aktywność) i temperatura 400−450°C, której wymaga katalizator. Prokarionty wiążące azot nie mają takich wymagań technicznych. ↩︎
  2. Rodzaj Peltigera odznacza się największą różnorodnością w Eurazji i Ameryce Północnej, ale rozprzestrzenił się także na pozostałe kontynenty, a przez Amerykę Południową dotarł nawet do Półwyspu Antarktycznego. Kilkanaście gatunków występuje na Grenlandii. W strefie tropikalnej pawężnice żyją głównie w górach. ↩︎
  3. Upraszczam nieco opis porostów, które tworzą mini-ekosystemy mogące zawierać większą liczbę uczestników symbiozy. Kiedy mówimy o dwóch lub trzech symbiontach, mamy na myśli tylko najbardziej istotne gatunki tworzące porost. ↩︎

Opisy ilustracji

Nagłówek. Trzęsidło (Nostoc sp.), cyjanobakteria będąca w istocie organizmem wielokomórkowym. Wśród zwykłych (fotosyntetyzujących) komórek wegetatywnych tworzących nici widoczne są heterocysty odpowiedzialne za wiązanie azotu atmosferycznego. Foto: rmatth. Źródło: iNaturalist (licencja CC BY-NC-SA 3.0).
Ryc. 1. Pawężnica rudawa (Peltigera rufescens), przykład porostu dwuskładnikowego (jedynym fotobiontem jest cyjanobakteria Nostoc sp.). Widoczne są wzniesione nad plechą owocniki (apotecja) przypominające kształtem siodła, służące do rozmnażania płciowego (produkujące zarodniki). Foto: Piotr Gąsiorowski 2022. Lokalizacja: piaszczyste nieużytki w okolicy Czerwonaka, Wielkopolska (licencja CC BY-NC-SA 3.0).
Ryc. 2. Pawężnica brodawkowata (Peltigera aphthosa), przykład porostu trójskładnikowego. Fotobiontem jest zielenica Coccomyxa. Widoczne na zdjęciu cefalodia (ciemne brodawki na powierzchni plechy) zawierają cyjanobakterie Nostoc sp., zapewniające porostowi zaopatrzenie w przyswajalne związki azotu. Gatunek rzadki w Polsce, występujący tylko w górach; podlega ścisłej ochronie gatunkowej. Foto: bienchen 2022. Lokalizacja: Elliot Lake, Ontario (Kanada). Źródło: iNaturalist (licencja CC BY-NC 4.0).

Lektura dodatkowa

Projekt Peltigera, Lutzoni Lab, Duke University, Durham, Karolina Północna (USA): https://lutzonilab.org/peltigera/project/
Struktura i działanie nitrogenazy: https://pdb101.rcsb.org/motm/26

Co zawdzięczamy wirusom (6): Nowy obraz ewolucji życia

Inne wpisy z tej serii:
Część 1. Kilka pytań fundamentalnych
Część 2. Bakteriofagi, czyli wielopoziomowa gra strategiczna
Część 3. Podstępni włamywacze, czyli wirusy w stylu retro
Część 4. Dygresja o naszym genomie i ukrytych w nim wirusach
Część 5. Nie ma tego złego, co by na dobre nie wyszło

Jeszcze raz: czym są wirusy?

Badania ostatnich kilkudziesięciu lat, zwłaszcza wskutek postępu, jaki się dokonał  w genetyce i biologii molekularnej, gruntownie zmieniły naszą wiedzę o wirusach (zresztą podobnie jak o organizmach komórkowych). Dość powiedzieć, że o ile pół wieku temu wirusy dzielono umownie na dwie rodziny, dziś klasyfikacja ICTV (Międzynarodowego Komitetu Taksonomii Wirusów) wyróżnia 6 domen, 10 królestw, 72 rzędy i 264 rodziny (nie wspominając o wielu wirusach o niepewnym stanowisku systematycznym), przy czym liczby te rosną dosłownie z miesiąca na miesiąc i jest jasne, że wirusy dotąd zbadane i opisane stanowią tylko ułamek ich rzeczywistej różnorodności.

Badania nad genomiką porównawczą wirusów i nad ich związkami z poszczególnymi grupami organizmów komórkowych rzuciły wreszcie trochę światła na zagadkę pochodzenia wirusów. Opisane w poprzedniej części cyklu innowacje ewolucyjne, które zawdzięczamy wirusom, bledną wobec hipotez, wg których np. DNA i mechanizmy jego replikacji zostały „wynalezione” przez wirusy w czasach, gdy życie komórkowe stawiało pierwsze kroki i było wciąż oparte na RNA jako nośniku informacji.1 Wirusy mogły także odegrać znaczącą rolę w ewolucji eukariontów, uczestnicząc w procesach, które doprowadziły do utworzenia jądra komórkowego. Są to koncepcje spekulatywne, ale traktowane poważnie.

W odróżnieniu od organizmów komórkowych wirusy nie mają uniwersalnego zestawu genów/białek, których homologi (formy sprowadzalne do wspólnego przodka) występowałyby we wszystkich liniach ewolucyjnych. Białka tworzące kapsydy wirusów wyewoluowały niezależnie co najmniej dwa razy, a między różnymi liniami wirusów często zachodziła wymiana poszczególnych modułów genomu, dlatego ich genealogia niekoniecznie układa się w eleganckie drzewo rodowe, ale miejscami przypomina splątany krzak. Znaczna część genów wirusowych nie ma w ogóle odpowiedników wśród organizmów komórkowych. Jeśli wirusy są reliktami świata starszego niż LUCA (ostatni wspólny przodek współczesnych organizmów komórkowych), to mogą przechowywać zakonserwowaną genetycznie informację o wczesnych odgałęzieniach „drzewa życia”, które nie pozostawiły po sobie komórkowych potomków.

Wirusy olbrzymie

Dwadzieścia lat temu (w roku 2003) opisano pierwszego z wirusów-gigantów, zaliczanych obecnie do klasy Megaviricetes. Wraz z dwiema innymi grupami (do których należy np. ASFV, czyli wirus afrykańskiego pomoru świń, oraz cała rodzina wirusów ospy) tworzą one typ Nucleocytoviricota, czyli wirusów olbrzymich w szerszym sensie. Tym gigantem był Mimivirus, pasożytujący na pełzakach Acanthamoeba polyphaga. Kapsyd mimiwirusa ma średnicę ok. 0,5 μm, a wraz z otaczającymi go białkowymi włókienkami – 0,75 μm. Oznacza to, że jest on widoczny pod mikroskopem optycznym. Z tego powodu, choć mimiwirusy obserwowano już we wczesnych latach dziewięćdziesiątych XX w., przez ponad dziesięć lat lat brano je omyłkowo za bakterie.

Mimiwirusy są nie tylko duże, ale i skomplikowane. Mają genomy o długości ponad miliona par zasad, zawierający około tysiąca genów (a nawet ok. 10% DNA „śmieciowego”, co wśród wirusów jest ewenementem). Niektóre z tych genów zawierają introny i są poddawane splicingowi, jak typowe geny eukariontów. Po co wirusowi tak ogromna liczba genów? Oprócz genów normalnie występujących u wirusów (kodujących białka strukturalne i kilka enzymów, bez których wirus nie mógłby się powielać) mimiwirus zawiera też mnóstwo takich, których spodziewano by się wyłącznie u organizmów komórkowych. Kodują one np. swoiste enzymy katalizujące wiązanie poszczególnych aminokwasów z transportowym RNA (syntazy aminoacylo-tRNA), czynniki translacyjne, własną unikatową rodzinę cytochromów P450 (jedną z ich licznych funkcji jest unieszkodliwianie obcych toksyn), białka odpowiedzialne za metabolizm aminokwasów, lipidów i polisacharydów, syntezę nukleotydów czy naprawę DNA. Są tam także geny niekodujące, służące do produkcji tRNA. Funkcja większości genów mimiwirusów pozostaje nieznana i być może jeszcze nas zaskoczy.

Oznacza to, że mimiwirus nie zdaje się na to, co znajdzie u gospodarza, ale włamuje się z całą ciężarówką własnych narzędzi i zakłada fabrykę swoich kopii, funkcjonującą jak organellum komórki żywicielskiej. Ponieważ taką fabrykę mogą wziąć na cel wirofagi (wirusy pasożytujące na wirusach olbrzymich), mimiwirus posiada też zapisane w DNA środki obrony przed wirofagami. Z punktu widzenia koncepcji wirocelu, o której wspominałem na początku tego cyklu, wewnątrzkomórkowe stadium życia mimiwirusa trudno określić inaczej niż jako organizm – i to dość skomplikowany.

Ryc. 1.

Mimivirus wyglądał początkowo na wybryk natury, ale poszukiwania innych wirusów tego typu szybko doprowadziły do podobnych odkryć. Obecnie (1 września 2023 r.) Nucleocytoviricota dzielone są roboczo na 11 rodzin i 54 rodzaje, ale jest oczywiste, że rzeczywista liczba jednostek taksonomicznych w randze rodzin powinna raczej iść w dziesiątki, a rodzajów –  w setki (i dotyczy to wirusów już zaobserwowanych, a nie tych jeszcze nieodkrytych).2 Nie wszyskie są naprawdę olbrzymie, ale rekordziści budzą respekt: mogą mieć kapsydy o długości 1,5 μm (czyli niewiele mniejsze niż komórka bakterii z modelowego gatunku Escherichia coli) albo genomy o długości ok. 2,5 mln par zasad. Zestaw genów odkryty  mimiwirusa nie jest dziwacznym wyjątkiem, ale powszechną cechą wirusów olbrzymich.

O ile początkowo znajdowano gigantyczne wirusy w dość specyficznych środowiskach, obecnie wydaje się, że można na nie natrafić właściwie wszędzie. Wskazują na to badania metagenomowe, identyfikujące ich DNA w rozmaitych środowiskach. Aby potwierdzić ich obecność za pomocą danych morfologicznych, ostatnio zespół mikrobiologów zbadał pod transmisyjnym mikroskopem elektronowym próbki gleby leśnej pobranej z amerykańskiej stacji badań ekologicznych Harvard Forest w stanie Massachussetts, należącej do Uniwersytetu Harvarda. Poszukiwano tworów, które mogłyby być wirionami wirusów olbrzymich. Znaleziono ich setki o najrozmaitszych kształtach, w tym wiele „klasycznych” kapsydów dwudziestościennych, albo pozbawionych dodatków, albo otoczonych włókienkami (jak u mimiwirusa), zaopatrzonych w symetrycznie rozłożone wypustki lub rurkowate ogonki (jak u rodzaju Tupanvirus). Niektóre mają kształt owalny (jak u rodzajów Pandoravirus czy Pithovirus). Sam wygląd nie stanowi niezbitego dowodu, że mamy do czynienia z wirusami, potrzebne są zatem dalsze badania, ale właściwie trudno sobie wyobrazić, czym innym mogłyby być te wirusopodobne cząstki.3

Ryc. 2.

Wirusy olbrzymie z rzędu Algavirales występują szczególnie obficie w środowiskach wodnych, gdzie infekują planktoniczne eukarionty należące do rozmaitych gałęzi drzewa życia. Jednym z nich jest Chlorovirus, którego liczne gatunki pasożytują na jednokomórkowych zielenicach. Jest go tyle, że dla niektórych orzęsków (np. pantofelków, czyli Paramecium) stanowi istotny składnik pokarmowy. Orzęski z rodzaju Halteria są jedynymi znanymi eukariontami, które potrafią przeżyć na diecie złożonej z samych chlorowirusów. W warunkach laboratoryjnych jeden osobnik halterii konsumuje od 10 tys. do miliona wirusów dziennie. Szacuje się, że w niewielkim stawie populacja halterii pożera 1014–1016 (od stu bilionów do stu bilardów) wirusów olbrzymich na dobę, przy czym sama stanowi pokarm dla zooplanktonu. Ten łańcuch pokarmowy  ma zauważalny wpływ na obieg węgla, azotu i fosforu w tym ekosystemie.

Epilog  z morałem

Wirusy nie mają własnego stadium komórkowego, choć można powiedzieć, że są „porywaczami ciał”, uprowadzającymi i wykorzystującymi do własnych celów fenotypy organizmów komórkowych. Nie produkują rybosomów (które są wspólnym dziedzictwem wszystkich potonków LUCA), a zatem nie syntetyzują białek samodzielnie. Do przenoszenia swojego materiału genetycznego używają kapsydów, których białka tworzy gospodarz na podstawie specyfikacji dostarczonej przez wirusa. Czasem pożyczają geny gospodarza, ale częściej same są źródłem innowacji genetycznych i przenoszą do świata organizmów komórkowych geny i białka wcześniej w nim nieznane. Gdziekolwiek występuje życie komórkowe, tam można znaleźć także wirusy, nie ma więc przed nimi ucieczki. Na szczęście jest to naturalny stan rzeczy od około czterech miliardów lat, więc poza epizodami drastycznego naruszenia równowagi wirus–gospodarz koegzystujemy sobie dość harmonijnie.

Tradycyjne wyobrażenie o wirusach jako prymitywnych „czynnikach zakaźnych, których nie zatrzymują porcelanowe sączki bakteryjne”, należących bardziej do świata chemii niż biologii4, jest dziś kompletnie anachroniczne. Wirusy są tak ważnymi uczestnikami życia na Ziemi i jego ewolucji, że akademickie pytanie, czy same wirusy są żywe, w ogóle przestaje mieć znaczenie. I to także zawdzięczamy wirusom: zrozumienie, że definicja życia jest nieostra i że na jego ewolucję trzeba patrzeć z szerokiej perspektywy, w której historia wirusów nie jest przypisem, ale jednym z centralnych rozdziałów.

Przypisy

1) Wirusy mogą oczywiście używać zarówno RNA, jak i DNA w wersji jednoniciowej lub dwuniciowej, ale odwrotna transkrypcja, czyli przepisywanie informacji genetycznej z RNA na  DNA jest specjalnością retrowirusów (w szerokim sensie).
2) Patrz https://ictv.global/taxonomy (domena Varidnaviria, królestwo Bamfordvirae, typ Nucleocytoviricota).
3) Artykuł opisujący te obserwacja dostępny jest w postaci preprintu dopiero oczekującego na recenzje i publikacje: https://www.biorxiv.org/content/10.1101/2023.06.30.546935v1.full
4) Wendell M. Stanley otrzymał w roku 1946 r. nagrodę Nobla nie z „fizjologii i medycyny”, ale z chemii za „wyizolowanie wirusa mozaiki tytoniu w czystej formie krystalicznej”.

Lektura dodatkowa

Embarras de richesse, czyli problemy z klasyfikacją wirusów i potrzeba reformy: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001922
Czego dowiadujemy się o ewolucji od wirusów: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755228/
Wirusy olbrzymie: https://www.sciencenews.org/article/meet-giants-among-viruses
Wirusy olbrzymie a eukarionty i jądro komórkowe: https://www.sciencedirect.com/science/article/pii/S1369527416300017, https://www.sciencedirect.com/science/article/pii/S0168170220310753
Wirusożerne orzęski: https://www.sciencenews.org/article/first-microbes-eat-virus-virovory-algae

Opisy ilustracji

Ryc. 1. Rekonstrukcja drzewa filogenetycznego wybranych wirusów olbrzymich (Nucleocytoviricota). Według obecnego stanu wiedzy drzewo to jest o wiele większe i bardziej skomplikowane. Jest ono zakorzenione w czasach poprzedzająych pojawienie się ostatniego wspólnego przodka organizmów komórkowych (LUCA). Źródło: Colson et al. 2011 (licencja CC BY 3.0).
Ryc. 2. Niektóre z typów morfologicznych potencjalnych wirionów wirusów olbrzymich z Harvard Forest. Źródło: Fischer et al. 2023 (bioRχiv preprint, licencja CC BY-NC-ND 4.0).

Co zawdzięczamy wirusom (5): Nie ma tego złego, co by na dobre nie wyszło

Inne wpisy z tej serii:
Część 1. Kilka pytań fundamentalnych
Część 2. Bakteriofagi, czyli wielopoziomowa gra strategiczna
Część 3. Podstępni włamywacze, czyli wirusy w stylu retro
Część 4. Dygresja o naszym genomie i ukrytych w nim wirusach
Część 6. Nowy obraz ewolucji życia

Wirus odwdzięcza się za gościnę

W drugim odcinku niniejszej serii była mowa o tym, jak bakteriofagi potrafią przynieść korzyść bakterii, w której genomie umieściły swojego uśpionego profaga, powielającego się niezłośliwie w cyklu lizogenicznym. Jedną z korzyści była ochrona przed ponowną infekcją tym samym lub blisko spokrewnionym wirusem. Czy coś podobnego działa także w przypadku retrowirusów atakujących kręgowce? Aczkolwiek nie wchodzi tu w grę mechanizm stosowany przez fagi, wiele badań wskazuje, że produkty ekspresji genów pochodzących od retrowirusów endogennych (ERV) mogą wpływać na układ odpornościowy, a ponadto na różne, nie do końca zbadane sposoby bezpośrednio ograniczać zdolność wirusów egzogennych do infekowania komórek i skutecznego przeprowadzania odwrotnej transkrypcji.

Jeśli endogenizacja zachodzi w warunkach długotrwałej epidemii (kiedy jeden z typów retrowirusa chorobotwórczego może zakażać komórki linii płciowej i instalować swojego prowirusa w ich DNA, po czym łagodnieć wskutek gromadzenia się mutacji), może się zdarzyć, że nosiciele prowirusa uzyskują zwiększoną odporność na zakażenie typem egzogennym. Wydaje się, że coś w tym rodzaju obserwujemy w przypadku retrowirusa KoRV infekującego koale (Phascolarctos cinereus). Wirus ten wywołuje objawy podobne do AIDS u ludzi, choć łagodniejsze: osłabienie układu odpornościowego i w konsekwencji podatność na nowotwory złośliwe i zakażenia oportunistyczne (głównie chlamydiozę).

Ryc. 1.

Jeden z typów KoRV jest zdolny do zakażania bardzo różnorodnych rodzajów komórek, także należących do linii płciowej, i ma w związku z tym skłonność do endogenizacji. Jest to proces ewolucyjny odbywający się na naszych oczach: niektóre populacje koali są w ogóle wolne od KoRV, inne są zakażone praktycznie w 100%. Prowirus w komórkach linii płciowej może ulegać rekombinacji z innymi, dawno zdegradowanymi retrowirusami endogennymi, czego wynikiem są warianty zawierające defekty. Są one wciąż zdolne do namnażania się przez retrotranspozycję i wywoływania szkód, ale mniej zjadliwe niż kompletna forma wyjściowa. Mogą zatem szerzyć się w populacji kosztem nieuszkodzonego wirusa, jednocześnie zapewniając nosicielom zwiększoną odporność na zakażenie egzogennymi krewniakami.1 Dobór może w takiej sytuacji premiować mniejsze zło chroniące przed większym. Niewykluczone, że jest to jeden z częstych scenariuszy skutecznego utrwalania się ERV w genomach gospodarzy.

Pół miliarda lat wyścigu zbrojeń

Kręgowce (Vertebrata) są zaopatrzone w wyjątkowy system odpornościowy, w którym oprócz powszechnej wśród eukariontów odporności nieswoistej (wrodzonej) kluczową rolę odgrywa wysoce zaawansowana odporność swoista (adaptacyjna). System ten, oparty na aktywności limfocytów i komórek prezentujących antygeny, potrafi rozpoznawać olbrzymią liczbę nowych „substancji obcych”, wiązać je za pomocą precyzyjnie dobranych przeciwciał i niszczyć, a także przechowywać pamięć o nowo napotkanych antygenach. Dzieje się to dzięki generowaniu ogromnej zmienności przeciwciał (immunoglobulin) i receptorów limfocytów B i T. Ich geny tworzone są przez składanie (rekombinację) kilku modułów losowo wybranych z puli kilkuset genów obecnych w genomie, a następnie dodatkową modyfikację produktu tego składania. Liczba potencjalnie wytwarzanych przeciwciał jest zatem miliony razy większa niż liczba dziedziczonych genów kodujących przeciwciała. Zauważmy, że ponieważ proces rekombinacji i selektywnego powielania przeciwciał pasujących do antygenów zachodzi w komórkach somatycznych, jakimi są limfocyty, jego wynik nie jest dziedziczony z pokolenia na pokolenie. Każdy osobnik rozwija własną, indywidualną odporność swoistą.

Odporność swoista wyewoluowała najprawdopodobniej w kambrze, ok. 500 mln lat temu. Bezżuchwowce (śluzice i minogi), czyli linie rodowe najdawniej oddzielone od reszty kręgowców, posiadają system alternatywny, który powstał w dużym stopniu niezależnie, choć działa w nieco analogiczny sposób. Zamiast immunoglobulin (białek dopasowywanych do antygenów) rolę przeciwciał odgrywają w nim zmienne receptory limfocytów.

System odporności swoistej pozostałych kręgowców, czyli żuchwowców (Gnathostomata) nie został odziedziczony po dalekich przodkach, ale rozwinął się w stosunkowo krótkim czasie między ostatnim wspólnym przodkiem wszystkich kręgowców a rozejściem się linii ewolucyjnych chrzęstnoszkieletowych i kostnoszkieletowych (u obu grup zasadniczo ten sam system istnieje w rozwiniętej formie).2 Jest to fakt zastanawiający, bo choć rozmaite elementy uczenia się reakcji na antygeny i pamięci immunologicznej występują także u innych organizmów (nie wyłączając prokariontów), różnica jakościowa między tymi rozwiązaniami  prekursorowymi a systemem odporności kręgowców jest uderzająca.

Powstanie tak skutecznej ochrony przed patogenami zbiegło się w czasie z pojawieniem się właściwych retrowirusów (rodzina Retroviridae), które współcześnie atakują wyłącznie kręgowce. Ponieważ retrowirusy są pasożytami wyrafinowanymi, stosującymi pomysłowe strategie w celu uniknięcia rozpoznania i eliminacji przez organizm gospodarza, a przy tym szybko ewoluującymi, można podejrzewać, że z kolei adaptacyjny system odporności swoistej pojawił się jako odpowiedź kręgowców w wyścigu zbrojeń z wirusami.

Kluczowym składnikiem systemu są RAG1 i RAG2, czyli „geny aktywujące rekombinację”, ulegające ekspresji w rozwijających się limfocytach B i T. Kodowane przez nie enzymy (oczywiście nie samodzielnie, ale z pomocą innych białek) regulują proces wycinania, tasowania i łączenia wspomnianych wyżej modułów. Od dość dawna wiadomo, że geny RAG są spokrewnione z genem kodującym transpozazę używaną przez transpozony DNA z grupy nazywanej Transib (transpozaza jest to enzym umożliwiający elementom ruchomym przemieszczanie się w genomie metodą „wytnij i wklej”). Co dziwne, transpozony Transib nie występują u kręgowców, choć można je znaleźć u zwierząt dość blisko z nimi spokrewnionych, np. szkarłupni. W 2016 r. odkryto u lancetnika Branchiostoma belcheri transpozon, który wydaje się „żywą skamieniałością”: w odróżnieniu od swoich krewniaków zawiera odpowiedniki obu genów RAG. Lancetniki nie są kręgowcami, ale należą wraz z nimi do typu strunowców (Chordata). Skoro zatem prekursor kompleksu RAG istniał u prymitywnych strunowców (po czym jego oryginalna forma zanikła w linii rodowej kręgowców), hipoteza zakładająca transpozonowe pochodzenie genów sterujących systemem odporności swoistej stoi na pewniejszym gruncie.

Transpozony DNA tego konkretnego typu trudno nazwać wirusami: ich pochodzenie ginie gdzieś w mrokach wczesnej ewolucji życia na Ziemi i brak dowodów na ich wirusową genealogię; ale są to w każdym razie elementy na ogół „pasożytnicze”, powielające się samolubnie. W tym przypadku jednak ich enzymy zostały wykorzystane przez gospodarza (przodka żuchowców) w nowej funkcji, robiąc zawrotną karierę na jego usługach.

Ssaki, białka osłonki i żyworodność

Często się zdarza, że jakiś produkt ewolucji, ukształtowany pod naciskiem selekcyjnym tak, aby sprawnie pełnić jakieś funkcje biologiczne, okazuje się nagle przydatny w zupełnie nowych zastosowaniach. Zjawisko to nazywamy egzaptacją albo kooptacją. Często prezentowanym przykładem są pióra, które wyewoluowały jako wielofunkcyjna okrywa ciała dinozaurów, ale tylko w jednej z ich linii rodowych – u przodków ptaków – okazały się dodatkowo przydatne jako powierzchnia nośna umożliwiająca aktywny lot. Inny przykład to język, pełniący u czworonogów najrozmaitsze fukcje, a u człowieka zaadaptowany jako jeden z najważniejszych narządów mowy (przy zachowaniu wielu dawnych funkcji). Ponieważ wirusy endogenne przez pewien czas pozostają aktywne jako potencjalne źródło produktów zakodowanych w prowirusie, należy się spodziewać, że od czasu do czasu któryś z tych produktów przyda się gospodarzowi i zostanie przejęty w celu pełnienia nowej funkcji.

Wspominałem w poprzednim wpisie, że jedną z cechą charakterystycznych retrowirusów endogennych (w odróżnieniu od innych retrotranspozonów LTR) jest zachowanie śladów genów zwanych env, kodujących białka, które wchodzą w skład lipidowej osłonki wirusa (zwykle jako glikoproteinowe wypustki/kolce na jego powierzchni). Białka tego typu wiążą się z receptorami błonowymi komórek i umożliwiają fuzję błony komórki i osłonki wirusa. Dzięki tym mechanizmom retrowirus przeprowadza „abordaż” i wtargnięcie do infekowanej komórki, a po zakończeniu cyklu replikacyjnego jego młode wiriony mogą opuścić komórkę.

Białka env mogą zatem stanowić coś w rodzaju „rozpuszczalnika molekularnego”, powodującego fuzję błon komórkowych i kontrolowane (w odróżnieniu od patologicznego) zlewanie się komórek w olbrzymie wielojądrowe syncytia. Z takich syncytiów składa się syncytiotrofoblast, końcowa część łożyska, wnikająca w ścianę macicy.3 Syncytium maksymalizuje powierzchnię wymiany składników odżywczych między matką a zarodkiem/płodem, zarazem stanowiąc barierę dla komórek układu odpornościowego matki. Nie pozostawia bowiem przestrzeni międzykomórkowej, przez które mogłyby się one prześliznąć i zaatakować „obcy” organizm potomka.

Białka biorące udział w tworzeniu synctytiów łożyska, zwane syncytynami, są w prostej linii potomkami białek env „pożyczonych” od retrowirusów i kooptowanych w nowej roli. Wirusy, które ich użyczyły, są od dawien dawna nieaktywne. Moduły prowirusa kodujące białka kapsydu i enzymy umożliwiające odwrotną transkrypcję zostały nieodwracalnie uszkodzone przez liczne mutacje. Natomiast gen env dostał „nowe życie” jako kluczowy element procesu reprodukcyjnego ssaków żyworodnych.

Przygoda ssaków z białkami erv musiała się zacząć już u wspólnych przodków kladu Theria, zanim rozwidliły się linie ewolucyjne łożyskowców (Eutheria) i torbaczy (Metatheria) – czyli zapewne we wczesnej jurze (ok. 190 mln lat temu). Torbacze także tworzą łożysko i także wykorzystują w tym celu białka typu syncytyn.4 Zupełnie niezależnie od ssaków ryby żyworodne (np. piękniczkowate, Poeciliidae) i niektóre jaszczurki (afrykańskie scynki Lubuya ivensii) wykształciły struktury pełniące rolę łożyska i – co już chyba nie powinno dziwić – również zaadaptowały do ich budowy retrowirusowe białka env.

Ryc. 2.

Co ciekawe, uzależniwszy się od pożyczonego białka, ssaki nie zadowoliły się jednorazową egzaptacją genu env, ale co pewien czas (zwykle co kilkadziesiąt milionów lat) wymieniają go na „nowy model”. W różnych liniach rozwojowych łożyskowców następowało pozyskiwanie nowych wariantów erv od retrowirusów endogennych, a także utrata wariantów odziedziczonych po dalszych przodkach. Dwie syncytyny, które ulegają ekspresji u człowieka, są stosunkowo niedawnego pochodzenia. Gen kodujący syncytynę-1 występuje u małp wąskonosych, ale nie szerokonosych, został zatem egzaptowany 30–35 mln lat temu, już po zróżnicowaniu się małp na te dwie grupy. Gen starszej syncytyny-2 występuje u wszystkich małp, choć brak go u wyraków i małpiatek, liczy więc sobie zapewne ok. 40–45 mln lat.

Wirusy a układ nerwowy

Wciąż słabo poznany, ale jak się zdaje, bardzo ważny wkład wirusów w naszą ewolucję zawdzięczamy retrotranspozonom LTR typu TY3-gypsy, czyli prastarym wirusom z rodziny Metaviridae. Pożyczony z ich arsenału gen ARC – a właściwie rodzina genów, której protoplasta pojawił się u wspólnego przodka czworonogów (Tetrapoda) jakieś 350 mln lat temu – ulega ekspresji w komórkach układu nerwowego. ARC zachowuje się podobnie jak wirus: produkuje białko, które z kolei oddziałuje z kodującym je mRNA, obudowując je płaszczem przypominającym kapsyd. Powstające w ten sposób wirusopodobne cząsteczki przekazywane są przez zakończenia synaps, „zakażając” kolejne neurony.

O tym, co dokładnie zachodzi wskutek tej międzykomórkowej wymiany mRNA i jakiego typu informacja jest przekazywana, niewiele jeszcze da się powiedzieć, ale z badań, w których mysi gen ARC poddawano inaktywacji lub wyciszaniu, wynika, że od jego aktywności zależy plastyczność synaps, a pośrednio – organizacja pracy neuronów opraz procesy związane z uczeniem się i pamięcią długotrwałą. Być może nasze zdolności poznawcze, inteligencję i świadomość również w dużym stopniu zawdzięczamy egzaptacji elementów dostarczonych przez wirusy.

Morał

Przykłady wykorzystania elementów genetycznych pochodzenia wirusowego lub transpozonowego przez gospodarzy należących do różnych gałęzi drzewa życia można by długo wyliczać. Wpis na blogu musi zachować rozsądną objętość,  mogłem więc skrótowo zaprezentować tylko kilka z nich. Każdy rok przynosi zaskakujące odkrycia w tej dziedzinie. Nawet ta skromna próbka dowodzi jednak, że to, czym jesteśmy i w jaki sposób przebiegała ewolucja naszych przodków, w znacznym stopniu zależało od działalności wirusów. Tych samych, które infekują nasze komórki i są na ogół sprawcami chorób, często cierpienia i śmierci – a jednak czasem okazują się czynnikiem stymulującym ewolucję albo bezpośrednim źródłem ważnych, a nawet przełomowych innowacji biologicznych.

Faktem jest, że przeważająca większość sekwencji wirusowych i transpozonowych gromadzących się w genomie ulega typowej pseudogenizacji. To, co zostaje poddane „recyklingowi” i wtórnie wykorzystane (egzaptowane geny kodujące białka, sekwencje generujące użyteczne RNA, różnego rodzaju elementy regulatorowe) stanowi w gruncie rzeczy niewielką część pierwotnej zawartości „pasożytniczych” fragmentów DNA (endogennych wirusów, wszelkich retrotranspozonów czy transpozonów DNA) i jeszcze mniejszą część całego genomu. Wirusy nie są z natury ani naszymi wrogami, ani przyjaciółmi, ani narzędziami w ręku jakiejś siły wyższej. Działają bez świadomego celu, tak ukształtowane przez ewolucję, żeby jak najskuteczniej dbać o własny interes. Ale od czasu do czasu wynika z tego znacząca korzyść dla ich „ofiar”, a zatem pamiętajmy, że także z naszego ludzkiego punktu widzenia wirusy nie zasługują na to, żeby postrzegać je stereotypowo jako jednoznaczne zło i zagrożenie.

Przypisy

1) Nie oznacza to, że przyszłość koali rysuje się różowo. Ich populacje są zagrożone z wielu całkiem innych przyczyn (utrata i fragmentacja siedlisk, pożary lasów, konskewencje masowych polowań w przeszłości). Od początku XX w. do naszych czasów liczba koali skurczyła się prawdopodobnie o 99%. W tej sytuacji trwająca epidemia może być gwoździem do trumny gatunku niezależnie od naturalnych procesów endogenizacji wirusa, których zrozumienie jest ważne dla prób opracowania skutecznych szczepionek przeciwko KoRV.
2) Człowiek należy do żuchwowców, a w ich obrębie do kostnoszkieletowych (Osteichthyes). Celowo unikam tu nazwy „ryby kostnoszkieletowe”, bo „ryby” to termin nieformalny, a klad kostnoszkieletowych obejmuje nie tylko ryby. Jedną z grup kostnoszkieletowych są mięśniopłetwe (Sarcopterygia), do których spośród organizmów współczesnych należą trzonopłetwe, dwudyszne i czworonogi (czyli płazy, gady wraz z ptakami i ssaki). Kiedy mówimy o koewolucji kręgowców i wirusów, ważne jest zrozumienie, jak wygląda drzewo rodowe tych pierwszych i gdzie należy w nim szukać rodowodu człowieka.
3) Upraszczam tu skomplikowaną historię ewolucji łożyska, które u ssaków należy do najbardziej zmiennych i najszybciej ewoluujących struktur anatomicznych (co ma związek z egzaptacją białek wirusowych). Powyższy opis dotyczy w każdym razie łożyska człowieka i małp wąskonosych.
4) Wbrew rozpowszechnionym przekonaniom o „prymitywizmie” torbaczy, to biologia rozwojowa łożyskowców jest w większym stopniu odziedziczona po wspólnych przodkach, a reprodukcja torbaczy, z krótką ciążą i długotrwałym „donoszeniem” młodych w torbie lęgowej, jest innowacją tej grupy (i nie stanowi stadium przejściowego między jajorodnością pierwszych ssaków a sposobem reprodukcji łożyskowców). W tym sensie to torbacze są grupą „bardziej zaawansowaną ewolucyjnie”.

Lektura dodatkowa

Ewolucja retrowirusa KoRV w populacji koali: https://www.microbiologyresearch.org/content/journal/jgv/10.1099/jgv.0.001304
Popularne streszczenie: https://www.nottingham.ac.uk/news/koala-genetics
Rekombinacja jako wstęp do „udomowienia” zjadliwego retrowirusa: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112702/
Ewolucja syncytyn u łożyskowców: https://royalsocietypublishing.org/doi/10.1098/rstb.2012.0507
Torbacze jako ssaki „zaawansowane ewolucyjnie”: https://www.nhm.ac.uk/discover/news/2023/may/marsupials-might-be-the-more-evolved-mammals.html
Jak działa „wirus kognitywny”, czyli gen ARC: https://www.sciencedirect.com/science/article/pii/S0092867417315040
Inne przykłady symbiosy wirusów z gospodarzem: https://journals.asm.org/doi/10.1128/jvi.02974-14.

Opisy ilustracji

Ryc. 1. Koala (Phascolarctos cinereus), torbacz, który niechcący stał się żywym laboratorium endogenizacji retrowirusa zachodzącej w czasie rzeczywistym. Foto: Benjamint444. Źródło: Wikipedia (licencja CC BY-SA 3.0).
Ryc. 2. Uproszczone drzewo rodowe naczelnych pokazujące historię endogenizacji genów envFRD i envW (kodujących syncytynę-2 i syncytynę-1) oraz genów retrowirusowych envV i envR kodujących białka także posiadające część właściwości syncytyn (w tym działanie immunosupresyjne, zmniejszające ryzyko konfliktu immunologicznego). Źródło: Esnault et al. 2013 (licencja CC BY 4.0).