Morskie opowieści (6) czyli jak Pan Bernoulli kontenerowiec Ever Given wystrychnął na Dudka.

Kochany Czytelniku.

Aby pływać na statku, nie trzeba być profesorem, doktorem czy naukowcem. To prosta rzemieślnicza robota, wymagająca zdrowego rozsądku, odrobiny wiedzy i zaangażowania oraz szacunku do Natury. Z tym większym zadziwieniem chylę czoła przed ludźmi, którzy swoje życie poświęcili nauce, edukacji i wiedzy niekoniecznie czerpiąc z tego zasłużone profity. Nauka to pasja, która pcha świat do przodu. Bez tych ludzi, ciekawych świata nadal byśmy zjadali własne smarki, siedząc zimą w jaskini, ogrzewani ciepłem wspomnień o minionych dniach lata, nie wiedząc czy znowu przyjdzie. (I proszę nie podawajcie przykładu Fritza Habera. Nawet wśród naukowców znajdują się moralne czarne owce).

Poczta Egiptu z okazji 1 rocznicy blokady kanału przez kontenerowiec Ever Given wydała znaczek. Kopareczka walcząca w pocie hydraulicznych przewodów uwieczniona.

Rozwój techniki jednak zmusił i nas marynarzy do odrobiny wysiłku intelektualnego i postaramy się ruszyć odrobinę szarych komórek do omówienia jakże ciekawego wypadku kontenerowca MV Ever Given, który osiadł w Kanale Sueskim 23 marca 2021r. Nie będę Was szczegółowo zanudzał hydro-dynamiką płynów, liczbą Reynoldsa czy równaniem Bernoulliego, ale odrobina podstaw ze szkoły podstawowej (średniej?) się przyda.

Dudek w kanale. Wystrychnął,,,,,

Ponieważ ostatnio kilka razy przemierzałem Kanał Sueski, zdobyłem trochę oficjalnych i nieoficjalnych informacji, które pomogą naświetlić Wam problem tranzytu przez ten, jakże istotny dla światowego handlu, szlak morski. Problem, który z pewnością znowu się wydarzy. Chciwość ludzka i powiększanie się kontenerowców rośnie wraz z kwadratem zamówień dóbr na portalach aukcyjnych. A święta tuż za rogiem.

Zatem do krótkiej historii, dlaczego i w jaki sposób, doszło do zablokowania kanału przez kontenerowiec Ever Given, serdecznie Państwa zapraszam.

Miejsce w którym Ever Given zablokował kanał. Po lewej stronie brzegu tablice pamiątkowe.

Jak wiemy, na wszystko na świecie działają siły. Powietrze (chociaż pewnie o tym nie myślimy) waży około 1,224 kg/m3 zatem ma masę i waży, wisząc nad nami wywiera nacisk, siłę, które czasem przytłacza meteopatów. Jeżeli takie powietrze nabierze prędkości z powodu różnicy ciśnień i jeżeli gradient różnicy będzie duży, czyli ośrodki wysokiego i niskiego ciśnienia będą blisko siebie, to powstanie pospolity silny wiatr. Siła niszcząca działającego wiatru, upraszczając, zależy od jego masy i prędkości. Im większa powierzchnia, na którą działa wiatr, tym ciśnienie wiatru większe.

Kopareczka czeka….

Tu ważna uwaga: Siła jest wyrażana w Newtonach, ale ponieważ dla „zwykłych ludzi” jest to jednostka równie abstrakcyjna jak ciepło wyrażane w dżulach, zatem przeliczyłem Newtony siły za pomocą stałej grawitacji na tony. Zastosowałem pewne uproszczenie, aby łatwiej to sobie wyobrazić. Pamiętamy ze szkoły, że siła to F = a*m (przyśpieszenie: a (m/s2) oraz masa: m (kg).) i że siła ma wektor, czyli kierunek działania.

Miejsce pamięci. Tu blokowałem…

Obecnie największe kontenerowce (o wymiarach 400m długości, 62 szerokości, wysokości burty 10 metrów i średnio 10 kontenerów w kolumnie), przepływające przez Kanał Sueski mają powierzchnię nawiewu wiatru około 10.000-12. 000 m2 . Pamiętajmy, że nasz Dar Młodzieży to maleństwo o powierzchni żagli około 3000 m2 . Różnica ogromna. Przy wietrze wiejącym z prędkością 20 węzłów (takie marne 5°B) – siła nacisku działająca na statek to około 50-60 ton. Przy prędkości 25 węzłów to już 70-80 ton a przy wietrze 40 węzłów (8°B) ta siła nacisku już ponad 200 ton. Pamiętajmy, że siła (opór) rośnie z kwadratem prędkości.

Typowy widok na mijance. Północna strona Jeziora Gorzkiego.

Aby uzmysłowić sobie teraz, jak to się przekłada na codzienne operowanie statkiem w porcie czy kanale? Musicie widzieć, że standardowa siła uciągu zwykłego, nowoczesnego holownika tzw. bollard pull to około 40-60 ton. W dużych i nowoczesnych portach 80-120 ton. Jest to siła, którą holownik pracujący z pełną mocą maszyn, wywiera na obiekt (poler) położony w linii poziomej.  W Kanale Sueskim największy holownik ma bollard pull około 70-80 ton i kilka mniejszych circa 40 ton. To wszystko. Dookoła kręcą się jeszcze komercyjne holowniki portowe, ale nie są one rozpatrywane jako asysta kanałowa. Jedynie w przypadkach awaryjnych są wynajmowane na zasadach Lloyd Salvage agreement – no cure-no pay. Mówiąc po polsku: w przypadku wypadku, umowa o ratownictwo za grube pieniądze idące w miliony dolarów. To już nie jest standardowe wynajęcie holownika w porcie za 20.000 USD.

Tak. To tu….

Zatem staje się jasne, że tak duże statki mają limit pogodowy (siły wiatru) aby przepłynąć Kanał Sueski. Standardowo około właśnie 20-25 węzłów w asyście holownika. Ta asysta jest niestety iluzoryczna, gdyż holownik nie jest połączony ze statkiem, aby wspomagać jego kontrolowanie. Władze kanału dość ambiwalentnie podchodzą to takich rzeczy. Dlaczego? Można snuć domysły. Pewnie chodzi o koszty, ale i odpowiedzialność, gdy coś pójdzie nie tak.

Typowy “bąbelek”

Zatem podsumujmy. Powierzchnia nawiewu dużego kontenerowca jest równie duża jak rozmiar standardowego boiska do gry w piłkę nożną. Aby holowniki o bollard pull 100 ton mogły przy sile 6°B taki statek kontrolować, trzeba ich przynajmniej 4.

No cóż. Szeroko to już było….

Pamiętajmy, że również sporym ograniczeniem jest konstrukcja statku i tzw. mooring calculation force, czyli obliczony na podstawie wyporności, wielkości statku i przewidywanych sił, parametr wytrzymałości zainstalowanych urządzeń do kotwiczenia i cumowania (tzw. equipment number), według którego dobiera się parametry urządzeń kotwiczno – cumowniczych. W przypadku statków ‘tanio” zrobionych może się okazać, że polery statkowe mogą obsłużyć jedynie 54 tony czy 94 tony itd. – co może ograniczać użyteczną moc holownika, aby uniknąć zniszczenia statku/pęknięcia holu.

Tego statki stanowią wyzwanie nawet w najbardziej technologicznie rozwiniętych portach jak Rotterdam czy Singapur.

Czy w wypadku kontenerowca Ever Given zadziałał jakiś podmuch wiatru? Tu zdania są podzielone, bo piloci gubią się w zeznaniach. Jest to o tyle dziwne, że miałem nadzieję, że tzw case study, czyli analiza wypadku została upubliczniona, ale okazuję się, że obie strony nabrały wody w usta, wyjaśnienia są enigmatyczne i nikt do końca nie wie co się stało. Ja doświadczyłem burzy piaskowej w Kanale Sueskim, podmuchy wiatru czasem się tam zdarzają, chociaż nieczęsto. Niestety ten czynnik wypadku nie jest potwierdzony, ale prawdopodobny.

Drugim czynnikiem, który już na pewno miał udział z wypadkiem jest związany z Bernoullim.

Wikipedia. Tak wygląda zwężka Venturiego, która prezentuje działanie prawa Bernoulliego. Pomiar dla gazów

Prawo Bernoulliego w zastosowaniu morskim wykłada się jasno; Im szybciej płynie ciecz, tym niższe ciśnienie. Jest z tym związany tzw. paradoks hydrodynamiczny, bo ciecz zachowuje się inaczej niż nam wskazuje intuicja. Jeżeli wtłoczymy ciecz do rury a następnie tę rurę przewęzimy, to w zwężeniu tym ciecz popłynie szybciej pod UWAGA: mniejszym ciśnieniem.

Wikipedia. Prezentacja siły nośnej skrzydła. Bernoulli w całej krasie.

Dzięki temu latają samoloty, statki wchodzą na mieliznę a żaglówki na Mazurach pływają do przodu. Strugi powietrza opływając szybciej zwężenie, wytwarzają siłę nośną na skutek właśnie spadku ciśnienia.

Wikipedia. Tak wygląda zwężka Venturiego, która prezentuje działanie prawa Bernoulliego. Pomiar dla cieczy

W przypadku kontenerowca Ever Given będziemy mówić o „banking effect” czyli efekcie zasysania brzegowego, o osiadaniu statku, czyli „squat effect” oraz efekcie poduszki brzegowej, czyli cushion effect.

Tak Ever Given powinien powoli płynąć kanałem.

Generalnie poruszający się statek rozpycha nieściśliwą wodę we wszystkich kierunkach. Taki tłusty bąbelek. Po wpłynięciu na płytsze wody zaczyna ona jednak mieć trudności, aby swobodnie opłynąć kadłub, ograniczona np. brzegiem kanału, czy bliskością dna. No i właśnie wtedy Pan Bernoulli daje o sobie znać. Wał spiętrzonej przed dziobem wody musi bowiem bokiem ominąć kadłub w kierunku rufy. Jak już wiemy wzrost prędkości przepływu powoduje spadek ciśnienia. Mała bieda, jeżeli statek trzyma się środka kanału. Wtedy siły są wyrównane symetrycznie i o ile statek nie rozwinie nadmiernej prędkość szansa na wpadnięcie na brzeg jest mała.

Doskonale widoczna “górka” podwyższonej, pchanej wody. To jest strefa wysokiego ciśnienia. Zaraz za nią widać lekkie obniżenie lustra wody. To strefa ssąca – obniżonego ciśnienia.

Dochodzi też do tego osiadanie statku, gdyż woda próbuje również opłynąć statek pod jego dnem. Zachodzi szereg wzajemnie się łączących zjawisk, zależnych głownie od prędkości statku, głębokości i szerokości i kształtu kanału, pełnotliwości kadłuba (czyli jego bąbelkowatości) oraz stosunku zanurzenia statku do głębokości kanału. Generalna zasada: speed kills. Zatem statek powinien poruszać się z prędkością minimalną, która zapewni mu sterowność, ale nie za szybko, aby siły ssące i osiadanie statku nie zaburzyły jego sterowności. (Jako ciekawostkę tylko podam, że na wodach otwartych mój bąbelek – tankowiec, przy pełnej prędkości około 15 węzłów osiada na dziób około 1.5 metra. O tyle zwiększa swoje zanurzenie)

Opis efektu kanałowej poduszki (banking and cushion effect) – główna przyczyna zablokowania kanału przez Ever Given.

W przypadku EverGiven problem był w mojej ocenie następujący:

  1. Statek wpłynął w Kanał Sueski, od południa, ale na wejściu nie wziął pod uwagę silnego prądu pływowego w tym samym kierunku. Prąd ten doświadczyłem i może on sięgać nawet wartości 3-4 węzłów, co dla sterowności statku jest już sprawą problematyczną. Bo jeżeli sterowność minimalna jest przy 5 węzłach to, aby skutecznie sterować, taki statkiem musi płynąc względem dna co najmniej 9-10 węzłów. Jest to już dla tak głęboko zanurzonego statku w relatywnie płytkim kanale sytuacja niebezpieczna.
  2. Niektóre statki Evergreen (według nieformalnych rozmów z pilotami) mają niedoszacowaną powierzchnię płetwy sterowej (nie wiem czy to prawda). W normalnych warunkach nie jest to problemem, ale przy krytycznych prędkości minimalnej, aby nadal utrzymać sterowność, statek taki musi zwiększyć prędkość. Zwiększenie prędkości, powoduje w jej kwadracie gwałtowny wzrost sił (obszarów wyższego i niższego ciśnienia), które jeszcze bardziej destabilizują ruch statku a szczególnie, jeżeli wyjdzie on z osi symetrii kanału. Traci on sterowność i aby j a uzyskać, znowu musi zwiększyć prędkości i znowu… i w koło Macieju. Jak widza państwo – samonapędzająca się tragedia – istne kanałowe perpetuum mobile. Znane zjawisko i opisane w literaturze (banking oraz cushion effect). Piloci zgodnie twierdzą, że kontenerowiec poruszał się z prędkością około 13-14 węzłów, co przy jego zanurzeniu stanowczo przekraczało oficjalne limity prędkości w kanale i skutecznie przyczyniło się do utraty sterowności na skutek sił opisanych przez Pana Bernoulliego.
  3. Nadbudówka dużego kontenerowca znajduje się mniej więcej w punkcie obrotu statku (tzw. pivot point). Muszą państwo wiedzieć, że statek skręca jak kombajn zbożowy. Punk obrotu znajduje się w około 2/3 odległości od rufy statku, zatem trochę jak kombajn czy Ikarus przegubowiec, zarzuca nasz bąbelek dupką. Przy skręcie w prawo, dupka leci w lewo. I odwrotnie. Mała bieda, jeżeli nadbudówka (jak w przypadku tankowca) jest na rufie. Dużo łatwiej jest ocenić wizualnie ruch statku i jego prędkość zmiany kursu. W przypadku kontenerowca jest to bardzo utrudnione i Kapitan z Pilotem muszą polegać głównie na wskazaniach urządzeń. Niestety przy zaburzonym przepływie wody, wszelkie logi i “Dopplery” zaczynają wariować, a GPS nie pokaże wszystkich parametrów ruchu.
No cóż. Małe opóźnienie…. widzę…

Mam nadzieję, że załączone wizualizacje pokazują problem dogłębnie.

Władze Kanału Sueskiego z pewnością mają problem. Statki są coraz większe. Pogłębienie i poszerzenie kanału to niebotyczne ilości pieniędzy i czasu. Szkolenie pilotów to również czas i koszty. Statki kontenerowe są coraz większe. Mają długość 399.9 metra i nośność >24.000 TEU (czyli standardowych kontenerów 20 stopowych). Przy szerokości 62 metrów i maksymalnym zanurzeniu 16.5 metra te monstra należą do majstersztyków inżynierii morskiej. Nie są największymi statkami, które eksploatuje obecnie człowiek, ale z pewnością wyglądają spektakularnie. Będą nadal perlić pot na czole i kapitanów i pilotów pomimo starań właścicieli i stoczni, aby sprawowały się jak najlepiej. Obawiam się, że podobne wypadki jak Ever Given to kwestia czasu. Na stan obecny parametry Kanału Sueskiego są następujące: max dopuszczalne zanurzenie to 60 stóp, czyli około 20.1 metra dla szerokości statku 50 metrów. Przy szerokości kontenerowca około 61 metrów maksymalne zanurzenie to 16.6 metra. Obligatoryjna eskorta holownika zaczyna się od zanurzenia około 14.3 metra. Prędkość tranzytu to około 9-11 węzłów.

Pogłębiarki działają…

Pogłębianie kanału trwa, ale statystyki wypadków są nieubłagane. Co roku, niestety, kilka statków ma poważne problemy. Te mniej poważne, zdarzają się prawie codziennie. Internet prawdę ci powie. 🙂

Zdjęcie z portalu społecznościowego. Nasza kochana kopareczka w akcji.

Oczywiście jako ciekawostkę tylko podam, że obecnie największymi statkami na świecie jest seria Ti class super tanker  (ULCC) o DWT 441.893 i zanurzeniu 24,5 metra. Te statki już nie przejdą Kanału Sueskiego i co ciekawe UWAGA!!!!!!!!! Ich ruch wpływa na ruch obrotowy Ziemi 😊 ale o tym już innym razem.


wszystkie zdjęcia własne, o ile inaczej nie zaznaczono.

Czarnobyl – 2. Oczami inżyniera

Tekst opracował specjalista energetyki, m.in. jądrowej, inż. Andrzej Nawrocki (Wrocław)

Blok czwarty elektrowni jądrowej w Czarnobylu, kilka miesięcy po katastrofie

Źródło: Wikimedia, licencja: CC BY-SA 2.0

Czy Czarnobyl musiał się zdarzyć? Nie musiał, ale mógł. A skoro mógł, to się zdarzył. I zapytajmy od razu: czy w Żarnowcu, gdyby oczywiście Żarnowiec był, mogło się zdarzyć coś podobnego? Nie! Nie mogłoby. A dlaczego? Spróbujemy wyjaśnić niżej, korzystając z fragmentu strony 8. tekstu „Subiektywna historia polskiej energetyki jądrowej”.

Mowa tam o różnych przesłankach, którymi się kierowano, podejmując decyzję o wstrzymaniu budowy i likwidacji projektu EJ Żarnowiec. Obok przesłanek ekonomicznych, katastrofa w Czarnobylu wytworzyła klimat wielce sprzyjający przeciwnikom energetyki jądrowej, zwłaszcza radzieckiej. Natomiast nie dość odważne i nie dość kompletne wyjaśnienia kwestii Czarnobyla nie pomogły sprawie.

Winien był wodór, który się zapalił, winien był grafit, który się zapalił, ale dlaczego się zapaliły, tego już nie mówiono. Jak diabeł święconej wody unikano stwierdzenia „wybuch jądrowy”. Słaby, nieudolny, ale wybuch! Bo jak inaczej wytłumaczyć fakt, że w ciągu 4 sekund moc reaktora wzrosła 100 razy? (Inne dane mówią: 1000 razy w 11 sekund). To musiała być nadkrytyczność (lub w pobliżu tego „nad”) na neutronach natychmiastowych! Kluczono, byle tylko z określeniem „reaktor jądrowy” nie kojarzyć słowa „wybuch”. Pamiętamy przecież, że „wybuch” to nic innego jak gwałtowne rozprężenie się jakiegoś medium zgromadzonego pod wysokim ciśnieniem w jakimś zbiorniku. Wysokie ciśnienie natomiast to wynik wysokiej temperatury, która spowodowała stopienie i odparowanie wszystkiego, co w tym zbiorniku mogło się stopić czy odparować. Z kolei wysoką temperaturę spowodowała duża ilość gwałtownie wyzwolonej w wyniku defektu masy towarzyszącemu jakimś przemianom energii. Gdy są to przemiany na poziomie jąder atomowych, które nazywamy reakcjami jądrowymi, a do takich należy reakcja rozszczepienia jader atomowych powodowana neutronami – istota reaktorów jądrowych, to był to wybuch jądrowy. (W odróżnieniu od wybuchu „atomowego”, inaczej – „chemicznego”, gdzie energia wyzwalana jest w wyniku defektu masy towarzyszącemu reakcjom chemicznym, czyli atomowym).(*)

W rezultacie tej katastrofy w powszechnej opinii wszystko, co jądrowe i radzieckie / rosyjskie, miało cechy czarnobylskie! A przecież gros radzieckiej / rosyjskiej energetyki jądrowej to reaktory typu PWR (Pressurized Water Reactor), w naszej części świata nazywane WWER (Wodno-Wodny Energetyczny Reaktor). W takich reaktorach odparowanie wody poprzez zanik spowolnienia neutronów prowadzi do zatrzymania reakcji rozszczepienia, i to pomimo równoczesnego pewnego ubytku pochłaniania neutronów. Natomiast w Czarnobylu, w reaktorze RBMK (Reaktor Bolszoj Moszcznosti Kanalnyj), gdzie za spowolnienie neutronów odpowiada głównie grafit – przeciwnie. Odparowanie wody poprzez ubytek pochłaniania neutronów prowadzi do intensyfikacji reakcji rozszczepienia. I stąd te 100 razy w 4 sekundy! W tym klimacie, dla bardziej zapalczywych i nawiedzonych, energetyka jądrowa jawiła się jako zbrodniczy wymysł „żydokomuny”! To nie budowało klimatu „projądrowego”.

Spróbujemy teraz odpowiedzieć sobie na pytanie: po co, albo dlaczego, coś takiego, co mogło zachować się tak jak w Czarnobylu się zachowało, czyli wybuchło, człowiek wymyślił, skonstruował, zbudował i do eksploatacji oddał. Reaktor w Czarnobylu i jeszcze w paru innych lokalizacjach byłego Związku Radzieckiego (Leningrad, Ignalina) to reaktor tzw. wrzący, na neutronach termicznych (spowolnionych), typ RBMK. Paliwem był nisko wzbogacony uran (parę procent rozszczepialnego izotopu U-235). Spowalniaczem neutronów grafit, natomiast czynnikiem roboczym – woda pod wysokim ciśnieniem. Ciepło powstałe w elementach paliwowych w wyniku reakcji rozszczepienia wynoszone jest do turbiny parowej wymuszonym przepływem czynnika roboczego wzdłuż elementów paliwowych. W kanałach z elementami paliwowymi woda podgrzewa się to nasycenia, wrze, a przegrzana w pewnym stopniu para wodna wprost zasilała turbinę parową. To oczywiste, że woda w rdzeniu reaktora ma również pewien udział w spowolnianiu neutronów (sprzyjającym rozszczepieniu), ale i ich pochłanianiu (szkodliwym dla rozszczepień).

Zasadne wydaje się pytanie: po co, albo dlaczego, wymyślono i zbudowano Czarnobyl,
a właściwie „Czarnobyle”? Aparat, którego właściwości były dobrze rozumiane, chociaż być może nie do końca wówczas ilościowo opanowane. Ja widzę dwa powody:

  1. Dla zastąpienia trudnej, bo wysokociśnieniowej (znacznie ponad 100 ata) konstrukcji zbiornikowej o średnicy około 4000 mm technologicznie łatwiejszą konstrukcją kanałową, wprawdzie też wysokociśnieniową, ale o średnicach tylko około 200 mm.
  2. Dla plutonu, tj. pierwiastka niewystępującego w przyrodzie, ale wielce pożądanego, bo jego izotop Pu-239 jest rozszczepialny, tak jak znany wszystkim i występujący
    w przyrodzie izotop U-235. Wytwarzając Pu-239, znacznie powiększamy (teoretycznie stukrotnie) zasoby paliwa jądrowego i dla reaktorów, i dla przemysłu zbrojeniowego (w pewnych zastosowaniach Pu-239 przewyższa U-235: większą liczbą neutronów w jednym akcie rozszczepienia przy mniejszej liczbie neutronów opóźnionych. Druga bomba, ta w Nagasaki, była już plutonowa).

Pu-239 powstaje w wyniku kaskady dwóch beta rozpadów U-239 (po drodze był Np-239) w reaktorze z paliwem uranowym w drodze pochłaniania neutronu przez U-238. I tak się dzieje w każdym reaktorze, z tym że w reaktorach na neutrony szybkie (FBR – Fast Breeder Reactor) dzieje się to efektywniej, a RBMK ma w niewielkim stopniu cechę zbliżoną do FBR. Powstający w reaktorze Pu-239 podlega równocześnie wypaleniu, natomiast konstrukcja kanałowa, w przeciwieństwie do zbiornikowej, pozwala na zindywidualizowane usuwanie z rdzenia reaktora elementów paliwowych z dostatecznie nagromadzonym Pu-239.

A jak doszło do niezamierzonego wybuchu?

Doszło do niego w wyniku niekorzystnego zbiegu kilku okoliczności. Blok, pracując z obniżoną mocą, był już przygotowany do pewnego eksperymentu elektrotechnicznego. Zmierzano do określenia ilości generowanej energii elektrycznej (dla potrzeb własnych) po wyłączeniu reaktora, tj. po zatrzymaniu reakcji rozszczepienia, a korzystaniu z tzw. „ciepła powyłączeniowego”, czyli pochodzącego z rozpadu promieniotwórczego produktów rozszczepienia. Zdarzyło się, że na polecenie dyspozycji mocy wynikającego z potrzeb sieci eksperyment zawieszono, a reaktor, pracując na obniżonej mocy, doznawał narastającego zatrucia ksenonowego (ksenon to produkt rozszczepienia silnie pochłaniający neutrony). Dla stabilizacji mocy reaktora podjęto działania neutralizujące zatrucie ksenonem: maksymalnie możliwe wycofanie z rdzenia reaktora elementów regulacyjnych i bezpieczeństwa, a także zdławienie zasilania kanałów paliwowych wodą. Ten drugi zabieg doprowadził do gwałtownego odparowania wody, a więc do drastycznego zmniejszenia pochłaniania neutronów, co w branży nazywamy „dodatnie sprzężenie zwrotne wywołane efektem próżniowym”. Natomiast wspomniane wyżej maksymalne wycofanie elementów regulacyjnych o pewnej nie najszczęśliwszej budowie w znacznym stopniu ograniczyło możliwość ratowania się poprzez szybkie wprowadzenie do rdzenia pochłaniających neutrony elementów regulacyjnych i zabezpieczenia. Nie dziwota zatem, że doszło do „100 razy w 4 sekundy”!

(*) Od redakcji: Podkreślmy, aby nie było niejednoznaczności – wybuch czarnobylski nie był eksplozją podobną do tej w Hiroszimie, choć efekty w postaci skażenia były zbliżone.

Czarnobyl – 1. Dlaczego nastąpiła katastrofa?

Zacznę od osobistego wspomnienia. Pod koniec kwietnia 1986 panowała bardzo ładna pogoda. Było dość ciepło i bezchmurnie. Moja dwuletnia córka kolejny raz zachorowała na anginę. Strasznie smutna patrzyła przez okno na podwórko, gdzie w piaskownicy bawiły się dzieci. Sama oczywiście nie mogła wyjść.

26 kwietnia była sobota. Nikt tutaj nie był świadomy, że 1000 km od nas zaczyna się dramat, który będzie trwał w zasadzie przez lata. W poniedziałek, 28 kwietnia poszedłem do pracy. Około południa przyszedł do naszego zakładu Włodek Augustyniak, radiochemik. Przyniósł zastanawiającą informację – ponieważ po południu miał mieć ćwiczenia ze studentami, chciał przygotować mierniki promieniowania gamma do pomiarów. Zauważył, że liczniki po prostu szaleją. Nie dało się ich wyzerować, po kilku minutach poziom promieniowania rósł. Już wtedy podejrzewał, że coś się musiało wydarzyć, ale nie miał pojęcia, co. Zadzwonił do Warszawy, do Centralnego Laboratorium Ochrony Radiologicznej (tzw. CLOR) z pytaniem, czy coś wiedzą. Odpowiedzieli, że absolutnie nic. Teraz już wiemy, że musieli mieć informacje, choćby ze stacji w Mikołajkach, gdzie rano tego dnia (po 5) poziom promieniowania wzrósł pół miliona razy! CLOR został poinformowany, więc w chwili, gdy Włodek dzwonił, informacja już tam była, ale została oczywiście utajniona. Po burzy mózgów postanowiliśmy przygotować płyn Lugola. Zrobiliśmy go dużo, tak że rozdawałem pojemniczki sąsiadom w hotelu asystenta, w którym mieszkałem. Tak wkroczyliśmy w epokę Czarnobyla.

W następnym wpisie pan inż. Nawrocki opisze katastrofę oczami inżyniera. Ja chciałbym tu w wielkim skrócie napisać, co tak naprawdę tam się stało. Przede wszystkim – ten reaktor nie powinien zostać dopuszczony do działania, ponieważ nie wykonano jednego z testów bezpieczeństwa. Dlaczego? Odpowiedź jest prosta – socjalizm. Wtedy mniej istotne były procedury bezpieczeństwa, natomiast liczyło się tylko to, żeby sztandarowe budowy oddać przed terminem. Odłożony eksperyment zaplanowano na kwiecień 1986, aby zameldować władzom w Moskwie sukces przed 1 maja. Miał być wykonany w ciągu dnia, ale… no właśnie, trzeba było go przesunąć, ponieważ była w tym momencie awaria innej elektrowni – w Smoleńsku. Dlatego też rozpoczęto go w piątek, 25 kwietnia, po godz. 23.00, w środku nocy.

Mówiąc krótko – całość miała polegać na „wyłączeniu” reaktora i sprawdzeniu, czy wszystkie systemy zadziałają prawidłowo. Trzeba wiedzieć, że nawet reaktor, który nie pracuje, musi być cały czas chłodzony, a do chłodzenia potrzeba zasilania prądem. Problem polegał na tym, że w chwili, gdy wyłączy się prąd, agregaty awaryjne potrzebują 60 sekund, aby przejąć zasilanie. Tymczasem główne turbogeneratory dostarczają energię tylko przez 15 sekund. No i mamy lukę – kluczowe 45 sekund.

Tutaj niestety zaczęły się błędy ludzi, wynikające z braku doświadczenia i zmęczenia. Na przedpołudniowej zmianie była odpowiednia kadra, która uczestniczyła już w podobnych testach. Nocny zespół był niestety zdecydowanie mniej doświadczony. Jednym z kardynalnych błędów było wyłączenie systemu automatycznego wyłączania reaktora. Podstawową kwestią, która miała tutaj kluczowe znaczenie, był fakt, że ten typ reaktora jest bardzo czuły na zmiany mocy (pojawia się tzw. zatrucie ksenonowe), które mogą spowodować niestabilność jego działania. Tak się właśnie stało. Jeśli ktoś chciałby dowiedzieć się nieco dokładniej o mechanizmie tego, co poprzedziło wybuch, proponuję zapoznać się z pojęciem współczynnika reaktywności przestrzeni parowych.

26 kwietnia, około godziny 1.23, gdy reaktor zaczął wymykać się spod kontroli, próbowano uruchomić procedurę natychmiastowego wsunięcia prętów kontrolnych w celu wygaszenia reaktora (tzw. procedura AZ-5). Nie udała się, ponieważ pręty kontrolne miały końcówki grafitowe (one pogorszyły sytuację), rdzeń już był przegrzany, co spowodowało znaczące odkształcenie kanałów, w które pręty powinny się wsunąć. W efekcie doszło do niekontrolowanego wzrostu mocy, co spowodowało gwałtowny wzrost ciśnienia wewnątrz reaktora, którego skutkiem było wyrzucenie w powietrze osłony radiacyjnej reaktora (1200 ton!). Naruszenie konstrukcji spowodowało z kolei kontakt wody z cyrkonowymi osłonami kanałów paliwowych, co doprowadziło do rozkładu wody chłodzącej na gazowy wodór i tlen. Ta mieszanina piorunująca eksplodowała nieco później, po zetknięciu się gazów z rozgrzanym do 3 tysięcy stopni grafitem. Wybuch zniszczył budynek czwartego bloku reaktora, powodując zapłon kilku ton kostek grafitowych i ich rozrzucenie po okolicy. Ich pożar trwał 9 dni. To właśnie wtedy do atmosfery przedostały się duże ilości izotopów promieniotwórczych, głównie jodu, cezu i strontu.

Chmura radioaktywna ruszyła na północ, ale niestety po kilkunastu godzinach zmieniła kierunek i nadciągnęła m.in. nad Polskę. Stąd wyniki ze stacji w Mikołajkach. Potem chmura poszła dalej na południe siejąc izotopami. Co ciekawe, największe punktowe skażenia nie były na północy, ale na Opolszczyźnie. Jod się zdezaktywował dość szybko, ale cez, a zwłaszcza stront są w glebie do dziś, chociaż już praktycznie nie stanowią już niebezpieczeństwa.

Dziś strefa wokół Czarnobyla podlega nadal restrykcjom. Sam reaktor jest od 2013 osłonięty tzw. arką, która w założeniu ma przetrwać ok. 100 lat.

O katastrofie napisano już wiele, ja z konieczności musiałem to skrócić do minimum.

Literatura uzupełniająca:

Adam Higginbotham – O północy w Czarnobylu – niesamowicie ciekawa książka!

Katastrofa w Czarnobylu minuta po minucie

Chronologia wydarzeń (j. ang.)

Jak to z Czarnobylem było – prof. Zbigniew Jaworski