Ryby dwudyszne i paradoksy genomiki

My, mięśniopłetwi

Prawdopodobnie około 430 mln lat temu, czyli w środkowym sylurze, od przodka ryb promieniopłetwych (Actinopterygii) oddzieliła się linia ewolucyjna znana jako mięśniopłetwe (Sarcopterygii). Jak sama nazwa wskazuje, wyróżniały się one budową płetw parzystych, które osadzone były na dobrze umięśnionych trzonach kostnych, zopatrzonych w stawy. Zwierzęta te miały też kilka innych cech szczególnych, na przykład zęby pokryte szkliwem złożonym głównie z twardego hydroksyapatytu. I promieniopłetwe, i mięśniopłetwe (tworzące wspólnie grupę ryb kostnych) miały przed sobą wielką przyszłość. Każda z nich obejmuje dziś po ok. 50% gatunków kręgowców (pozostawiając na marginesie ryby chrzęstne oraz minogi i śluzice). Gdyby obie pozostały w środowisku wodnym, musiałyby konkurować z sobą, tak się jednak złożyło, że ogromna większość współczesnych mięśniopłetwych to zwierzęta lądowe.

Mięśniopłetwe dość szybko podzieliły się na kolejne linie rozwojowe. Pierwsza z nich to trzonopłetwe (Actinistia), których największy rozkwit przypadał na wczesny trias. W jurze i kredzie były mniej zróżnicowane, ale za to niektóre gatunki osiągnęły olbrzymie rozmiary (ponad 5 m długości). Niemal wszystkie trzonopłetwe wymarły jednak z końcem mezozoiku. Jakimś cudem do naszych czasów przetrwały podręcznikowe „żywe skamieniałości” – dwa gatunki z rodzaju Latimeria.

Pozostałe mięśniopłetwe już wkrótce – na przełomie syluru i dewonu (420 mln lat temu) – uległy kolejnemu podziałowi na dwudyszne (Dipnoi) i grupę Tetrapodomorpha, której najstarsi przedstawiciele nadal żyli w wodzie: najpierw na płyciznach u wybrzeży morskich i w lagunach, a pod koniec dewonu coraz częściej w wodach słodkich. Ponieważ jednak posiadali płuca i mogli oddychać tlenem atmosferycznym, dzięki umięśnionym płetwom potrafili także wypuszczać się poza macierzysty żywioł i człapać po lądzie. Najstarsze skamieniałe ślady takich wędrówek (390 mln lat temu) odkryto w Zachełmiu w Górach Świętokrzyskich. Nieco młodsze pochodzą z Irlandii i Australii. Te wczesne eksperymenty doprowadziły w końcu do prawdziwego wyjścia na ląd około 375 mln lat temu. Umięśnione płetwy wyewoluowały w prawdziwe kończyny zakończone dłonią lub stopą z palcami. Jako jedyne w owym czasie kręgowce lądowe, Tetrapodomorpha miały dużą swobodę zasiedlania różnych nisz ekologicznych i ochoczo z niej skorzystały. Około 340 mln lat temu, w karbonie, żył ostatni wspólny przodek wszystkich dzisiejszych czworonogów lądowych (Tetrapoda), czyli na przykład człowieka i rzekotki drzewnej.

Nasi nieco zapomniani kuzyni

Ale zostawmy na boku czworonogi i przyjrzyjmy się ich grupie siostrzanej, czyli dwudysznym. W dewonie była to spora grupa kręgowców morskich: kiedy nasi praprzodkowie podejmowali próby wyjścia na ląd, w morzach żyło około stu gatunków bardzo różnorodnych dwudysznych. Podobnie jak tetrapodomorfy, posiadały one (obok skrzeli) płuca – worki powietrzne umożliwiające oddychanie powietrzem, co pomagało im przeżyć w wodzie ubogiej w rozpuszczony tlen. Płuca wywodzą się z tych samych pierwotnych struktur co pęcherze pławne ryb promieniopłetwych, ale mają bardziej skomplikowaną budowę: są podzielone na wielką liczbę mniejszych pęcherzyków w celu zwiększenia powierzchni wymiany gazowej. Dwudyszne bardzo wcześnie wyspecjalizowały się w polowaniu na zwierzęta osłonięte twardymi skorupami lub pancerzami, rozwinęły więc unikatową formę uzębienia w postaci masywnych płytek zębowych do miażdżenia twardego pokarmu, łatwo rozpoznawalnych w zapisie kopalnym.

Ryc. 1.

Niemal wszystkie karbońskie dwudyszne przeniosły się z oceanu do wód słodkich. Jedna z ich linii, klasyfikowana jako rząd Ceratodontiformes, objęła swoim zasięgiem cały superkontynent Pangei. Ich mezozoiczne skamieniałości znane są także z Polski. Większość dwudysznych wyginęła z końcem kredy, niektóre nieco później, w eocenie. Do naszych czasów dożyli przedstawiciele jednej z podgrup Ceratodontiformes, która po rozpadzie Pangei wyodrębniła się na południowym superkontynencie, Gondwanie. W miarę jak sama Gondwana dzieliła się na część wschodnią (Antarktyda, Australia, Nowa Zelandia, Indie i Madagaskar) oraz zachodnią (Afryka i Ameryka Południowa), zamieszkujące ją dwudyszne ewoluowały niezależnie na powstających kontynentach, dając początek odrębnym rodzinom.

Australijskim reliktem tego procesu jest rogoząb (Neoceratodus forsteri) z rzek południowo-wschodniego Queenslandu, ostatni żyjący przedstawiciel rodzaju znanego od kredy. W odróżnieniu od innych dzisiejszych dwudysznych zachował dobrze rozwinięte umięśnione płetwy, duże łuski i w pełni funkcjonalne skrzela, którym towarzyszy pojedyncze płuco. Dla rogozęba ewolucja jakby się zatrzymała: wygląda bardzo podobnie do najstarszych przedstawicieli Ceratodontiformes, a na przykład budową mózgu bardziej przypomina trzonopłetwe niż swoich dwudysznych kuzynów. Nie zapada też w sen letni (estywację), aby w ten sposób przetrwać porę suchą.

Różnice te wynikają stąd, że linia rodowa rogozęba wyodrębniła się w jurze, 150–200 mln lat temu. Wspólni przodkowie pozostałych współczesnych dwudysznych zamieszkiwali Gondwanę Zachodnią aż do jej rozpadu na Afrykę i Amerykę Południową, który nastąpił 100 mln lat temu. Wówczas rozwinęły się dwie kolejne linie, każda reprezentowana dziś przez jeden rodzaj: afrykański prapłetwiec (Protopterus) z czterema żyjącymi gatunkami i południowoamerykański prapłaziec (Lepidosiren) z jednym gatunkiem (L. paradoxa).1 Prapłetwiec i prapłaziec mają wiele cech wspólnych wskazujących na bliskie pokrewieństwo (co potwierdzają badania genetyczne): węgorzowate ciało pokryte drobną łuską, płetwy parzyste zredukowane do wiotkich, nitkowatych wyrostków, parzyste płuca, skrzela uwstecznione i praktycznie niefunkcjonalne u dorosłych osobników oraz zdolność do estywacji, czyli zapadania w sen letni w kokonie z zaschniętego śluzu w komorze wykopanej w błocie.2

Rekordowe genomy

Wszystkie współczesne dwudyszne mają jeszcze jedną cechę szczególną, niewidoczną gołym okiem: ogromne genomy. Genomy te są tak wielkie, że trudno było nawet oszacować ich długość metodami dawniej dostępnymi. Dopiero w 2021 r. udało się w pełni zsekwencjonować i zestawić w całość genom rogozęba. Okazało się, że zawiera on 43 miliardy par zasad (43 Gbp), czyli jest ok. 14 razy większy niż genom człowieka (3 Gbp).3 Wówczas rogoząb został oficjalnym rekordzistą całego królestwa zwierząt (tylko zwierząt, bo genomy roślinne bywają jeszcze większe).4 Nie na długo, gdyż jak pisałem w zeszłym roku, mały skorupiak zwany krylem antarktycznym (Euphausia superba) niebawem zdetronizował rogozęba jako posiadacz genomu złożonego z 48 Gbp.

Nowe odkrycia mieszają jednak stale w takich rankingach. Ten sam zespół, który trzy lata temu zbadał genom rogozęba, powtórzył ten wyczyn z genomami prapłetwca brunatnego (Protopterus annectens) i prapłaźca. Tytuł rekordzisty wrócił do dwudysznych. Prapłetwiec brunatny, jak się okazało, ma genom zawierający 47 Gbp – większy niż rogoząb, choć nie aż tak wielki, żeby pokonać kryla. Jednak prapłaziec naprawdę wymiata: jego genom liczy aż 91 Gbp, czyli trzydziestokrotnie przewyższa objętością genom ludzki i jest niemal dwukrotnie większy niż genom kryla antarktycznego. Podawana często jeszcze większa wartość (133 Gbp) dla prapłetwca abisyńskiego (P. aethiopicus) jest możliwa, ale wynika z oszacowań, które mogą być grubo zawyżone. Nie jest zatem oficjalnym rekordem królestwa zwierząt, dopóki genom tego gatunku nie został w pełni zsekwencjonowany.

Ryc. 2.

Skąd i po co tak wielkie genomy? Nie jest to cecha, która łączyłaby wszystkie mięśniopłetwe. Kręgowce lądowe w zasadzie mają genomy średnich rozmiarów: ludzkie 3 Gbp jest bliskie wartości przeciętnej dla kręgowców. Genom latimerii jest nieco mniejszy od ludzkiego. Wyjątkiem są salamandry, czyli płazy ogoniaste. W tej grupie także mamy do czynienia z przypadkami rozrostu genomów do rzadko spotykanych rozmiarów. Niestety dotąd zbadano szczegółowo tylko niewielką część płazich genomów. Spośród tych, które zsekwencjonowano i zestawiono w całość, niektóre osiągają 32 Gbp (genom aksolotla, Ambystoma mexicanum). Z pewnością górna granica możliwości salamander leży znacznie wyżej i kto wie, czy nie są one godnymi konkurentami dla dwudysznych, ale żeby się przekonać, czy tak rzeczywiście jest, musimy cierpliwie poczekać na wyniki dalszych badań.

Puchnięcie genomów dwudysznych jest starsze niż podział na współcześnie występujące rodzaje. Zaczęło się jeszcze w karbonie (300 mln lat temu) i wyhamowało po około 100 milionach lat, a jego śladem jest widoczny u kopalnych dwudysznych systematyczny wzrost wielkości komórek tkanki kostnej. Następnie – już po oddzieleniu się Ameryki Południowej od Afryki, a prapłaźców od prapłetwców – prapłaźce znowu zaczęły dynamicznie namnażać swoje DNA. Łatwo policzyć, że jeśli w ciągu 100 mln lat odrębnego rozwoju przybyło im około 40 miliardów par zasad, to co 10 milionów lat przybywało go średnio więcej niż cała objętość genomu ludzkiego.

Szalone transpozony

Czasem za wzrost rozmiarów genomu odpowiada poliploidalność, czyli podwojenie całego zestawu chromosomów. Kilka przypadków takiego zwielokrotnienia całego genomu zdarzyło się we wczesnej historii prymitywnych kręgowców, o czym pisałem tutaj. Ale u dwudysznych nie zaszło nic podobnego. Przeciwnie, ich kariotyp, czyli układ chromosomów, jest bardzo zachowawczy i niewiele się zmienił od czasu, kiedy ich przodkowie rozstali się z przodkami czworonogów. Natomiast same chromosomy są olbrzymie: większość z nich przewyższa wielkością genom człowieka.

Tym, co spowodowało ich rozrost, było namnażanie się „samolubnego” DNA, a szczególnie retroranspozonów typu LINE. Aktywny transpozon tego typu (zwany popularnie, choć nieściśle, „skaczącym genem”) przypomina w działaniu wirusy: koduje dwa białka umożliwiające mu tworzenie własnych kopii i wklejanie ich w inne miejsca genomu. Z czasem aktywność transpozonu zanika, bo losowe mutacje prędzej czy później uszkadzają geny potrzebne do autoreplikacji. Ponieważ skutki niekontrolowanego mnożenia się kopii LINE mogą zagrażać stabilności genomu, istnieją na poziomie komórki różne mechanizmy trzymające transpozony w ryzach. Sekwencje typu LINE stanowią ok. 21% genomu człowieka; są to jednak w znakomitej większości (ok. 99,9%) transpozony już nieaktywne lub ich poszatkowane szczątki.

Tymczasem w genomie prapłaźca zidentyfikowano ponad 75 tysięcy niezdegradowanych długich retrotranspozonów LINE, w znacznej części aktywnych. U prapłetwca jest ich mniej, ale towarzyszą im także retrotranspozony SINE, powielające się w nieco inny sposób. U rogozęba (podobnie jak u salamander) dużą rolę odgrywają ponadto tzw. retrotranspozony LTR. Efekt ich aktywności jest w sumie podobny: genom stopniowo zapełnia się powtarzalnymi sekwencjami DNA różnej długości (do kilku tysięcy par zasad). Wypełniają one przestrzenie między genami i introny (niekodujące sekwencje rozdzielające kodujące odcinki genu). Jest to jedna z przyczyn, dla których tak długo nie można było dokonać złożenia w całość sekwencjonowanych genomów dwudysznych: przypominało ono próby odtworzenia układu puzzle’a, w którym większość kawałków nie różni się wyglądem. Przełom nastąpił dopiero po zastosowaniu technik tzw. trzeciej generacji, czyli sekwencjonowania nanoporowego, które umożliwia bezpośrednią identyfikację długich i ultradługich odcinków DNA.

Zidentyfikowane sekwencje powtarzalne różnego typu stanowią 93% genomu prapłaźca, 85% genomu prapłetwca i 81% genomu rogozęba (u człowieka jest to co najmniej 45%, ale według niektórych oszacowań nawet powyżej 60%). Autorzy badania zwracają uwagę na wyjątkowo niski u dwudysznych poziom ekspresji tzw. piRNA (małych, niekodujących cząsteczek RNA o średniej długości 28 nukleotydów) i na zmniejszoną liczbę genów kodujących pewne białka z domeną zwaną „palcem cynkowym”. Jedne i drugie odpowiedzialne są między innymi za wyciszanie aktywnych retrotranspozonów. Osłabienie tych mechanizmów obronnych jest zapewne jedną z przyczyn, które pozwoliły traspozonom szerzyć się w genomach tych gatunków. Mimo wszystko nie doprowadziło to do przemeblowania układu chromosomów ani do innych dramatycznych skutków. Fragmenty genomu szczególnie wrażliwe (na przykład zwarte grupy genów homeotycznych, kontrolujących rozwój morfologiczny organizmu) są nadal chronione przez dobór naturalny przeciwstawiający się wklejaniu wewnątrz nich kopii transpozonów.

Czy te miliony dodatkowych kopii są do czegoś potrzebne swoim nosicielom? Ponieważ ewolucja lubi czasem złożyć coś sensownego z nagromadzonych rupieci, także „oswojone” transpozony mają potencjał użytkowy: bywają przypadkowym źródłem korzystnych innowacji. Jednak większość z nich nie pełni żadnej konkretnej funkcji. Są tolerowane, bo w ewolucyjnym bilansie strat i zysków czyszczenie genomu z niepotrzebnych elementów może nie być dostatecznie opłacalne. Wszystkie trzy rodzaje dwudysznych mają podobną liczbę genów kodujących białka – około 20 tysięcy (mniej więcej tyle samo co człowiek) i zapewne po kilka tysięcy funkcjonalnych genów RNA (też podobnie jak człowiek). Jeśli dodać do tego różne inne typy użytecznych sekwencji niekodującego DNA, to według wszelkiego prawdopodobieństwa dwudyszne mają go – co do rzędu wielkości – podobną ilość jak człowiek. Natomiast u prapłaźca niefunkcjonalne („śmieciowe”) sekwencje DNA zajmują nie 90% (jak u człowieka), ale 99,7% genomu. Popularne wyobrażenie o tym, że natura jest oszczędna i nie znosi bezużytecznego nadmiaru, zupełnie się nie sprawdza w tym przypadku.

Paradoks wartości C, czyli nie tylko długość się liczy

Prapłetwiec brunatny i prapłaziec są bliskimi kuzynami i niewiele się różną budową ciała, fizjologią i trybem życia – dla laika wyglądają ta samo – a jednak ich genomy różnią się wielkością dwukrotnie. Ta dysproporcja (jeszcze bardziej uderzająca np. wśród salamander lub w wielu grupach roślin) nazywana jest paradoksem wartości C (chodzi o jedną z miar wielkości haploidalnego genomu). Okazuje się, że nie ma uchwytnego związku między złożonością czy „zaawansowaniem ewolucyjnym” organizmu a rozmiarami jego genomu.

Niewielka ryba z rodziny rozdymkowatych, kolcobrzuch zielony (Dichotomyctere nigroviridis), żyjąca w słonawych i słonych wodach u wybrzeży Azji Południowo-Wschodniej, ma genom o objętości 340 milionów par zasad (340 Mbp), czyli 9 razy mniejszy niż genom człowieka albo – powiedzmy – myszy domowej (Mus musculus) i prawie 270 razy mniejszy niż genom prapłaźca. Kolcobrzuch ten posiada 23 pary chromosomów (o cztery więcej niż prapłaziec, o trzy więcej niż mysz i tyle samo co człowiek), ale każdy chromosom jest wielokrotnie mniejszy od ludzkich bądź mysich, nie wspominając o prapłaźcowych. A jednak użyteczna zawartość genomu kolcobrzucha jest taka jak zwykle: około dwudziestu tysięcy genów kodujących białka, sporo genów RNA – no i zostaje jeszcze aż nadto miejsca na inne sekwencje DNA użyteczne w mniej oczywisty sposób. Natomiast u kolcobrzucha, podobnie jak u wielu jego krewnych o niewiele większych genomach5, zanikła duża część DNA położonego poza genami i w intronach. Powtarzalne sekwencje pochodzenia transpozonowego stanowią tylko kilka procent ich genomów.6

Ryc. 3.

Ewolucja wielkości genomu to gra dwóch przeciwstawnych tendencji. Z jednej strony mamy drobne, pospolite mutacje zwane indelami (insercje i delecje): wstawiają one lub usuwają krótkie fragmenty DNA lub nawet pojedyncze pary zasad. W porównaniu z insercjami delecje są statystycznie nieco częstsze i obejmują nieco dłuższe sekwencje. Gdyby zatem nie działały inne czynniki, genom kurczyłby się powoli, ale systematycznie. Ta jego część, która ewoluuje neutralnie, bo nie chroni jej dobór naturalny, ulegałaby stopniowej erozji. W końcu pozostałoby z genomu to, co niezbędne do funkcjonowania organizmu: rdzeń złożony z sekwencji, których nie da się bezkarnie pozbyć. Z drugiej strony mamy powielające się aktywne transpozony i rzadkie, ale dramatyczne przypadki podwojenia większych fragmentów chromosomów, regionów obejmujących cały gen lub wiele genów, a nawet całego genomu, jak w przypadku poliploidyzacji. O ile nie prowadzą do śmierci lub bezpłodności, mogą błyskawicznie zwiększyć rozmiary genomu, kompensując jego kurczenie się wsputek losowych delecji. Oczywiście erozja nie ustępuje i zachodzi nadal, ale robi to w żółwim tempie, więc co pewien czas tendencja do wzrostu nadmiarowego DNA wyprzedza tendencję do jego redukcji.

W końcu ustala się jakaś dynamiczna równowaga między dodawaniem DNA (co jest głównie skutkiem działania transpozonów) a jego ubywaniem (głównie wskutek skromnych delecji drążących genom jak woda skałę). Mechanizmy wyciszania transpozonów nie są niezawodne, ale przynajmniej zapobiegają rozdymaniu genomu do nieporęcznych rozmiarów. Dla większości organizmów nadmiar DNA jest niemal obojętny. Typowa wielkość genomów ssaków łożyskowych to 2,5–3,5 Gbp. Znaczna większość tego DNA jest nadmiarowa, ale jego obecność nie wiąże się z kosztem wymagającym radykalnego odchudzania.

Może się jednak zdarzyć, że rozwój danej linii ewolucyjnej idzie w kierunku zmniejszenia rozmiarów komórek i jądra komórkowego; pożądane jest wtedy także „okrojenie” chromosomów. Tak było na przykład w przypadku kręgowców latających (nietoperzy i ptaków, a prawdopodobnie także pterozaurów) w związku z ich wyjątkowo intensywnym metabolizmem stałocieplnym. Pojawia się wtedy presja selekcyjna na usunięcie choćby części zbędnego DNA. Dlatego przeciętna wielkość genomu nietoperzy to ok. 2 Gbp – o jedną trzecią mniej niż u człowieka.7 Genomy ptaków są jeszcze mniejsze (zwykle ok. 1 Gbp) i zawierają tylko 4–10% sekwencji powtarzalnych; ptasie geny mają także skrócone introny. W ewolucji obu grup aktywność transpozonów nigdy nie ustała, ale pod naciskiem doboru naturalnego punkt równowagi między dodawaniem a ujmowaniem DNA przesunął się ku niższym wartościom.

Nie znamy dokładnie przyczyn, dla których rozdymkowate pozbyły się większości śmieciowego DNA, ale nietrudno się domyślić, jak to się stało. Każdy dostatecznie efektywny mechanizm hamujący namnażanie się transpozonów prowadzi z czasem do odchudzenia genomu – wystarczy poczekać kilkadziesiąt milionów lat. I odwrotnie: jeśli pozwalamy transpozonom „iść na całość”, to po kilkudziesięciu milionach lat mamy genom wypchany ich kopiami (w większości nieaktywnymi). Dwudyszne są przeciwieństwem ptaków i nietoperzy: ich metabolizm jest spowolniony, a komórki i jądra komórkowe – bardzo duże. Dożywają od ośmiu (prapłaziec) do kilkudziesięciu, a nawet ponad stu lat (rogoząb), spędzając życie w mulistych rzekach i jeziorach i nigdzie się nie śpiesząc. Do tego prapłetwce i prapłaźce zapadają sezonowo w sen letni, podczas którego tempo przemiany materii spada jeszcze sześćdziesięciokrotnie. Nie podlegają zatem silnemu naciskowi doboru przeciwko samolubnym transpozonom.

Przypisy

  1. Oficjalnie istnieje zatem sześć gatunków współczesnych dwudysznych (cztery w Afryce i po jednym w Australii i Ameryce Południowej), jednak z badań genetycznych wynika, że populacje prapłaźców z dorzeczy Amazonki i Parany rozdzieliły się się kilka milionów lat temu i różnice genetyczne między nimi są podobnego rzędu jak między gatunkami prapłetwców. Mamy zatem prawdopodobnie do czynienia z gatunkami kryptycznymi (nieodróżnialnymi morfologicznie). ↩︎
  2. Nie jest to jednak wyłącznie cecha tej grupy dwudysznych, bo estywacja podobnego typu występowała już u dość pierwotnych Ceratodontiformes z rodzaju Gnathorhiza, który żył od późnego karbonu do wczesnego triasu. Świadczą o tym skamieniałości tych zwierząt, zachowane w wykopanych przez nie norach. ↩︎
  3. Tu i w dalszym ciągu mówimy o genomie haploidalnym, czyli takim, jaki występuje w komórkach płciowych, zawierających jeden komplet chromosomów. ↩︎
  4. Ze wszystkich dotąd zbadanych organizmów największy genom ma Tmesipteris truncata, australijska paproć z rodziny psylotowatych. Zawiera on 160 miliardów par zasad, czyli ok. 50 razy więcej niż genom człowieka. ↩︎
  5. Należy tu szereg gatunków rozdymkowatych, między innymi rozdymka tygrysia (Takifugu rubripes), której genom liczy około 400 Mbp (7,5 raza mniej niż genom ludzki). Dzięki temu kompaktowemu genomowi rozdymka tygrysia zdobyła sławę jako drugi po Homo sapiens gatunek, którego DNA zsekwencjonowano w całości. Bardzo małe genomy (nieco ponad 400 Mbp) mają także najmniejsze znane promieniopłetwe, jednocentymetrowej długości rybki karpiowate z rodzaju Paedocypris. ↩︎
  6. Co ciekawe, u kolcobrzucha znaleziono ponad trzy razy więcej typów transpozonów niż u ludzi, ale mają one średnio po kilka tysięcy kopii, podczas kiedy u ludzi są tych kopii miliony. ↩︎
  7. Nietoperze znane są jako naturalny rezerwuar wirusów, nic więc dziwnego, że w ich genomach można znaleźć wielką liczbę retrowirusów endogennych, natomiast liczba transpozonów jest zredukowana, a szczególnie częste u człowieka retrotranspozony LINE-1 zupełnie zanikły u owocożernych nietoperzy z rodziny rudawkowatych. ↩︎

Opisy ilustracji

Ilustracja w nagłówku. Schemat struktury retrotranspozonu LINE-1. ORF1 i ORF2 to tzw. otwarte ramki odczytu (open reading frames), które mogą ulec translacji na białka. LINE-1 koduje dwa białka umożliwiające mu wklejenie własnej kopii w innej lokalizacji w genomie. Źródło: Michelle Tetreault Carlson 2022, blog Active Motif (fair use).
Ryc. 1. Kopalna ryba dwudyszna Dipterus valenciennesi ze środkowego dewonu (ok. 385 mln lat temu). Skamieniałość i rekonstrukcja wyglądu. Źródło: Orkney Landscapes (licencja CC BY-NC-SA 2.0).
Ryc. 2. Południowoamerykański prapłaziec (Lepidosiren paradoxa), chwilowy rekordzista w kategorii długości genomu w królestwie zwierząt. Źródło: Wikipedia (licencja CC BY-SA 2.5).
Ryc. 3. Kolcobrzuch zielony (Dichotomyctere nigroviridis), kręgowiec o rekordowo małym genomie. Foto: FishWise Professional. Źródło: iNaturalist (licencja CC BY-NC-SA).

Lektura dodatkowa (dla dociekliwych)

Czy ewolucja nadal nas dotyczy? Część 6: Podsumowanie

Część 1: Prolog
Część 2: Każdy z nas jest mutantem
Część 3: Dobór naturalny, nasz wróg i przyjaciel
Część 4: Jak żyć z doborem?
Część 5: Inne mechanizmy zmian

Ewolucja, ale jaka?

Myślę, że po lekturze poprzednich odcinków zgodzicie się z wnioskiem, że ewolucja nadal nas dotyczy i nie może nie dotyczyć, dopóki jesteśmy bytami biologicznymi. Rozmnażamy się płciowo podobnie jak inne ssaki. Nasz genom zbudowany jest tak samo jak inne i tak samo podlega mutacjom. Pula genetyczna naszego gatunku zawiera mnóstwo konkurujących z sobą wariantów (alleli), których częstość występowania zmienia się w czasie. Jest to zjawisko nieuniknione: nie można nie ewoluować, jeśli jest się populacją istot żywych (pamiętajmy, że ewoluują populacje, nie osobniki). Ewolucja kulturalna, która bezdyskusyjnie wywiera wielki wpływ na nasze życie, ani nie „wyłączyła” ewolucji biologicznej, ani nie jest w stanie zahamować dziedzicznych zmian zachodzących w naszym DNA.

Pytanie tylko, co jest dominującym mechanizmem ewolucji u współczesnego Homo sapiens, a w szczególności, czy oprócz dryfu genetycznego i przepływu genów między lokalnymi podpopulacjami działa na nas także dobór naturalny. Jeśli nie, to ewolucja ma charakter losowego błądzenia bez wyraźnego kierunku. A ponieważ taka sytuacja sprzyja gromadzeniu się potencjalnie szkodliwych mutacji, które obniżają średnie dostosowanie całej populacji, trzeba się liczyć z groźbą narastającego obciążenia genetycznego całego gatunku. Medycyna i cywilizacja potrafią je kompensować, ale nie bez końca. Kiedyś w końcu zajrzy nam w oczy widmo „globalnego szpitala”.

Dobro jednostek a przyszłość gatunku

Jeśli dobór działa nadal i jest w stanie eliminować przynajmniej tyle defektów genetycznych, żeby powstrzymać ich kumulację, to przyszłość gatunku maluje się w nieco weselszych barwach. Czy jednak tak jest? To, co uważamy za postęp cywilizacyjny, polega w dużej mierze na tym, że skupiamy się na skutecznym pomaganiu jednostkom, niezbyt się przejmując abstrakcyjnym „dobrem gatunku”. Zakładamy przy tym, że ewentualne problemy rozwiąże za nas przyszłość. Czy zresztą mamy inne wyjście? Trudno byłoby dobrowolnie cofnąć się do warunków życia sprzed setek lub tysięcy lat, rezygnując z dobrodziejstw cywilizacji. Wiemy już, że naiwna eugenika propagowana 100–150 lat temu, czyli próba zastąpienia selekcji naturalnej przez sztuczną (albo w wersji zmodernizowanej przez inżynierię genetyczną), nie prowadzi do niczego dobrego. Nikt normalny nie miałby ochoty żyć w rzeczywistości przypominającej Nowy wspaniały świat Aldousa Huxleya albo Opowieść podręcznej Margaret Atwood.

Badania dowodzą, że genom ludzki był kształtowany przez dobór naturalny przez większą część swojej historii – nawet w ostatnich tysiącleciach. Trudno też sądzić, że nacisk doboru ustał całkowicie. Trzeba przy tym pamiętać, że ludzkość to nie tylko członkowie względnie bogatych społeczeństw industrialnych. Setki milionów ludzi nadal żyją w regionach, gdzie bieda, głód, choroby i niedostatek opieki medycznej nie są bynajmniej wspomnieniem mrocznej przeszłości. Ale jak widzieliśmy, nawet społeczności w pełni korzystające z osiągnięć cywilizacji nie są całkowicie chronione przed selekcją biologiczną. Być może nie powinniśmy na ten fakt narzekać, bo wszędzie tam, gdzie dobór potrafi się wcisnąć, a my jesteśmy gotowi się z nim pogodzić, groźba obciążenia genetycznego nieco się oddala.

Zapewne najprzyjemniej byłoby żyć w świecie, gdzie każdy człowiek cieszy się zdrowiem i długim, szczęśliwym życiem, a jednocześnie mamy solidne podstawy, by wierzyć, że cała ludzkość ma przed sobą świetlaną przyszłość. Jednak z punktu widzenia biologii i genetyki populacyjnej jest to raczej utopia. Możemy tylko próbować pogodzić sprzeczności, idąc z biologią na kompromis. Czy to się uda przyszłym pokoleniom? Nie mam pojęcia. Nie udaję też, że wiem, co powinniśmy robić. Możliwe, że należałoby się poważnie zastanowić nad biologicznymi perspektywami naszego gatunku, tak jak próbujemy przeciwdziałać  skutkom katastrof ekologicznych, które sami wywołaliśmy (z globalnym ociepleniem włącznie). Można też przyjąć postawę fatalistyczną: co ma być, to będzie. Ludzie zwykle na tym poprzestają z braku lepszych pomysłów lub chęci do ich realizowania.

Ryc. 2.

Jak długo możemy pozostać tacy sami?

Ewolucja kulturalna zachodzi szybko i co pewien czas przyśpiesza. Około dwunastu tysięcy lat temu pojawiły się pierwsze kultury neolityczne. Nieco ponad pięć tysięcy lat temu wynaleziono pismo. Komputery istnieją od około osiemdziesięciu lat. Pierwszego satelitę wprowadzono na orbitę 67 lat temu. 48 lat temu po raz pierwszy zsekwencjonowano cały genom (maleńki, należący do pewnego bakteriofaga i kodujący tylko cztery białka). W porównaniu z historią Homo sapiens, liczoną w setkach tysięcy lat, cała historia cywilizacji jest mgnieniem oka; a przecież w końcu jesteśmy gatunkiem bardzo młodym. W ewolucyjnej skali czasu milion lat to niewiele, nam jednak wydaje się wiecznością. Stąd złudzenie niezmienności rodzaju ludzkiego. W powieściach i filmach fantastyczno-naukowych, których akcja rozgrywa się w bardzo dalekiej przyszłości i „w odległej galaktyce”, występują bohaterowie kubek w kubek tacy jak my, tyle że dysponujący znacznie bardziej zaawansowaną technologią (umożliwiającą np. podróże międzygwiezdne bez przejmowania się barierami czasoprzestrzennymi). Zmienia się wszystko prócz ludzi.

Czy jakikolwiek gatunek może pozostać niezmienny przez czas, który można określić jako długi w skali ewolucyjnej? Owszem, jeśli jest znakomicie przystosowany do stabilnej niszy ekologicznej. Znamy przykłady „żywych skamieniałości”, które pod względem morfologicznym nie różnią się od swoich przodków sprzed, powiedzmy, stu milionów lat. To nie znaczy, że przestały ewoluować. Wręcz przeciwnie, w ich genomach dzieje się bardzo wiele. Jak Czerwona Królowa z Po drugiej stronie lustra Lewisa Carrolla, muszą biec z całych sił, żeby pozostać w tym samym miejscu. W odpowiednich warunkach dobór naturalny premiuje trzymanie się raz osiągniętego optimum adaptacyjnego mimo dynamicznych zmian ewolucyjnych na poziomie molekularnym. Gdyby nie działał intensywnie, brutalnie eliminując odchyłki od ideału, gatunek dawno podryfowałby ku nowym morfologiom.

Sytuacja ludzi jest inna, bo nie jesteśmy wąskimi specjalistami trzymającymi się konkretnej niszy, a choćby nawet świat dokoła nas przestał się zmieniać, nie działa na nas (przynajmniej obecnie) dostatecznie silna presja selekcyjna, żeby zapewnić nam stabilność ewolucyjną. Gdyby chociaż zmiany, jakim możemy w przyszłości ulegać, miały charakter przystosowawczy! Nie mamy jednak żadnej gwarancji, że nasze cechy biologiczne pozostaną na dłuższą metę dobrze dostrojone do warunków, w jakich żyjemy, tym bardziej że te warunki sami zmieniamy w szaleńczym tempie. Istnieje całkiem realna możliwość, że w końcu nasz gatunek zacznie się kurczyć, nękany przez choroby genetyczne i cywilizacyjne, pandemie i zmniejszającą się płodność, a medycyna wyczerpie wszelkie sposoby, żeby temu zaradzić. W końcu Homo sapiens wygaśnie całkowicie. Bezpotomne wymarcie to nic niezwykłego – taki jest naturalny los większość linii ewolucyjnych.

Ryc. 2.

Eksperymentujmy!

Pozostawiam Czytelnikom dalszą refleksję nad kondycją i przyszłością ludzkości. Niezależnie od tego, czy jesteśmy optymistami, czy pesymistami, nic nie wiemy na pewno poza tym, że procesów ewolucyjnych nie da się zatrzymać, chyba że nasz gatunek podzieli los trylobitów lub tyranozaurów. Możemy jednak (jak przystało na nasz portal) przeprowadzać eksperymenty myślowe oparte na tym, co wiemy o mechanizmach ewolucji, dlatego zachęcam do dyskusji w komentarzach. W końcu jesteśmy podobno gatunkiem rozumnym. Im więcej myślimy o przyszłości, tym większa szansa, że z tego myślenia wyniknie coś konstruktywnego.

Opisy ilustracji

Ryc. 1. Wizja Ziemian kolonizujących planetę w odległej galaktyce, w bardzo dalekiej przyszłości. Sztuczna inteligencja (MS Copilot) zakłada, że koloniści niczym szczególnym nie różnią się od ludzi współczesnych (podobnie jak w uniwersum Diuny albo Gwiezdnych wojen).
Ryc. 2. Tak, zdaniem sztucznej inteligencji, mogą wyglądać ludzie za miliard lat. Przedstawiona tu istota wygląda na nieco scyborgizowaną i posiada owadzie skrzydła (trudno powiedzieć, jakiego pochodzenia). Poza tym jednak jest zdecydowanie człowiekiem (płci żeńskiej). Pomysł, że nasz gatunek mógłby przetrwać bez większych zmian przez miliard lat (tyle czasu dzieli nas od ameboidalnych jednokomórkowców, od których się wywodzimy), jest oczywiście biologicznym absurdem.

Czy ewolucja nadal nas dotyczy? Część 5: Inne mechanizmy zmian

Inne wpisy z tej serii
Część 1: Prolog
Część 2: Każdy z nas jest mutantem
Część 3: Dobór naturalny, nasz wróg i przyjaciel
Część 4: Jak żyć z doborem?
Część 6: Podsumowanie

Dryf, czyli siła, przed którą nie można uciec

Pojęcie dryfu genetycznego wyjaśniałem i opisywałem już szczegółowo w innym wpisie. Tu przypomnę tylko, że dryf jest losowym składnikiem ewolucji – matematyczną konsekwencją faktu, że w skończonej populacji częstość występowania alleli w kolejnych pokoleniach podlega przypadkowym fluktuacjom nawet wówczas, gdy nie działa na nie kierunkowy nacisk doboru (a także wtedy, gdy dobór działa). Allele poddane tylko działaniu dryfu kiedyś w końcu albo znikają z puli genetycznej, albo zostają w niej utrwalone z powodów czysto stochastycznych, czyli właściwie bez przyczyny. W przypadku człowieka i jego kuzynów znakomita większość mutacji, przede wszystkim (ale nie wyłącznie) neutralnych, jest ostatecznie utrwalana przez dryf.

Ponieważ mutacje zachodzą w sposób nieunikniony, a dryf jest matematyczną koniecznością, ewolucji – rozumianej jako zmiana częstości występowania alleli w perspektywie wielu pokoleń – nie da się zatrzymać. Można tylko, poprzez osłabianie doboru, pozbawiać ją kierunku (albo przynajmniej próbować). Analiza działania dryfu odgrywa centralną rolę w niemal neutralnej teorii ewolcji molekularnej, zapoczątkowanej przez japońską genetyczkę Tomoto Ohtę w latach siedemdziesiątych ubiegłego wieku, ale docenionej dopiero po kilku dziesięcioleciach. Teoria ta zwraca uwagę na znaczenie wielkości populacji: nawet w dużych populacjach mutacje niezupełnie neutralne, ale niezbyt szkodliwe, mogą ulegać utrwaleniu przez dryf. Prawdopodobieństwo takiego utrwalenia jest tym większe, im mniejsza jest ewoluująca populacja. W małych populacjach mutacje umiarkowanie niekorzystne lub (znacznie rzadsze) umiarkowanie korzystne przestają być widoczne dla doboru naturalnego i ewoluują podobnie jak mutacje neutralne. Dryf dominuje nad doborem. Mutacje, które w innych warunkach zostałyby wyparte przez korzystniejsze allele, mogą się gromadzić w lokalnej puli genetycznej i odwrotnie: te, które w dużej populacji byłyby promowane przez dobór, często znikają, nie mogąc pokonać losowych fluktuacji.

Ryc. 1.

Podpopulacje, wąskie gardła i efekt założycielski

Współczesna globalna populacja ludzi jest ogromna (ponad 8 miliardów), ale nie stanowi jednolitej masy, w której poszczególne osobniki przystępują do rozrodu równie często i z losowo wybranymi partnerami. Wiele zależy od struktury populacji, czyli od istnienia słabiej lub silniej wyodrębnionych podpopulacji regionalnych, w tym grup społecznych, których członkowie niechętnie szukają partnerów poza swoją społecznością, izolując się rozrodczo. Mogą wówczas powstawać istniejące przez wiele pokoleń demy – zbiorowości, wewnątrz których krzyżowanie się jest znacznie bardziej prawdopodobne niż krzyżowanie się z osobnikami „obcymi”. Sprzyja to działaniu dryfu, a jedną z konsekwencji jest gromadzenie się alleli niekorzystnych, które u osobników homozygotycznych (gdy ten sam allel dziedziczony jest od obojga rodziców) stają się przyczyną chorób o podłożu genetycznym. Klasyczne przykłady to konserwatywne grupy religijne, jak ortodoksyjni Żydzi lub amisze, tradycyjne społeczności afgańskie praktykujące małżeństwa między bliskimi kuzynami, a także dynastie panujące feudalnej Europy.1

W okresach kolonizacji obejmujących regiony niezamieszkane wcześniej przez ludzi, populacje założycielskie były często na tyle małe, że widać w nich efekt „wąskiego gardła”: gwałtowny spadek różnorodności genetycznej, któremu towarzyszy utrzymujący się przez dłuższy czas silny wpływ dryfu na kształtowanie puli genetycznej populacji potomnych. Jeśli kolonistom udawało się przeżyć w nowym otoczeniu i odnieść sukces demograficzny, to i tak w ich genomach widać skutki zdarzeń z przeszłości. Przykładem mogą być grupy krwi. Homo sapiens odziedziczył układ ABO po dalekich przodkach; jest to polimorfizm na tyle korzystny z punktu widzenia odporności na patogeny, że od milionów lat jego istnienie jest promowane przez dobór stabilizujący. Jednak w niezbyt wielkiej populacji dryf może doprowadzić do zubożenia lub całkowitego zaniku takiego polimorfizmu.

U przodków rdzennych Australijczyków całkowicie zanikła grupa B (globalnie nieco rzadsza niż A, więc statystycznie bardziej narażona na eliminację); pozostały tylko typy A i O. Większość rdzennych ludów obu Ameryk, reprezentujących potomków najstarszych fal migracji z Azji przez Beringię, utraciła także typ A (w ich populacji utrwalił się typ O). Ludy z grupy językowej na-dene w Ameryce Północnej, wywodzące się od późniejszych migrantów z Syberii, mają (podobnie jak rdzenni Australijczycy), grupy A i O. Natomiast najmłodsza fala, reprezentowana przez ludy eskimosko-aleuckie, zachowała pełny zestaw typów pierwotnych (A, B, O i AB). U części ludów Polinezji (np. u Hawajczyków i Maorysów) grupa B także zanikła lub stała się bardzo rzadka (podobnie u Basków w Europie), ale u rdzennych Nowogwinejczyków i ogólnie w Melanezji wszystkie odziedziczone grupy mają się dobrze.2

Redukcje tego typu mogą mieć znaczenie adaptacyjne. Co prawda „w normalnych warunkach” są one do pewnego stopnia niekorzystne (inaczej dobór stabilizujący nie zapobiegałby im w skali całego gatunku), ale warunki nie zawsze są „normalne”. Częste występowanie chorób takich jak cholera czy malaria zaburza w skali regionalnej równowagę między wariantami układu ABO, o czym pisał Marcin Czerwiński. Można sobie wyobrazić np. dobór naturalny przeciwko grupie krwi A podczas epidemii ospy zawleczonej do Nowego Świata przez Europejczyków (nosiciele tej grupy są bardziej narażeni na zakażenie wirusem ospy), ale rekonstrukcje filogenomiczne nie potwierdzają tak późnego zaniku grup B i A, są natomiast zgodne z hipotezą efektu założycielskiego i pradawnej redukcji polimorfizmu wskutek działania dryfu.3

Ryc. 2.

Przepływy genów i migracje

Istotnym czynnikiem ewolucji jest przepływ genów między podpopulacjami, a nawet między blisko spokrewnionymi gatunkami. Ta druga możliwość nie zachodzi już obecnie, bo ostatnie gatunki na tyle nam bliskie, że mogły mogły tworzyć z Homo sapiens płodne mieszańce, wymarły kilkadziesiąt tysięcy lat temu. Przekształcenia genomu takie jak fuzja, dzięki której powstał ludzki chromosom 2 (opisana przez Piotra Rieske), uniemożliwiły już w dalekiej przeszłości krzyżowanie się przodków ludzi i szympansów. Jak jednak wiemy od pewnego czasu, neandertalczycy i denisowianie (a być może także inni nasi kuzyni z rodzaju Homo) mieli kariotypy (zestawy chromosomów) tak podobne do naszego, że hybrydyzacja była możliwa i pozostawiła wyraźne ślady w naszych genomach (2–5% utrzymującej się domieszki DNA).

Skutki takiego przepływu genów mogą być niekorzystne np. w przypadku niepełnego dopasowania chromosomowego, gdy rekombinacja powoduje rozrywanie układów alleli, które wspólnie podlegały adaptacji i „dostroiły się” do siebie ewolucyjnie, lub gdy populacja będąca źródłem domieszki jest gorzej dostosowana do danego środowiska. Mogą jednak przynosić korzyść, jeśli niektóre allele zapożyczone od obcej linii ewolucyjnej dają jakąś istotną przewagę przystosowawczą. Tak było prawdopodobnie z niektórymi allelami pochodzenia neandertalskiego i denisowiańskiego; przykładem jest tybetański allel genu EPAS1, który występował także u denisowian. Pomaga on oddychać rozrzedzonym powietrzem (na Wyżynie Tybetańskiej tlenu jest o 40% mniej niż na poziomie morza).

Nasz gatunek jest dziś stosunkowo jednorodny genetycznie (wręcz nietypowo jak na małpę człekokształtną). Dystans geograficzny odpowiada za ok. 15% ludzkiej zmienności genetycznej; pozostałe 85% to wewnętrzne zróżnicowanie poszczególnych populacji regionalnych. Większa część tej zmienności nie ma znaczenia przystosowawczego, ale oczywiście składają się na nią także allele szkodliwe (np. powodujące u swoich nosicieli choroby uwarunkowane genetycznie) i korzystne (np. chroniące przed patogenami). Migracje i ogólna mobilność ludzi w świecie współczesnym sprzyjają intensywności przepływu genów między regionalnymi populacjami.

Trzeba pamiętać, że mutacje nie są szkodliwe lub korzystne same z siebie. Ich wpływ na dostosowanie zależy od interakcji organizmu z otoczeniem. Allel genu β-globiny (HBB) odpowiedzialny za niedokrwistość sierpowatą jest statystycznie korzystny dla populacji tam, gdzie zagrożenie malarią jest stałym elementem środowiska. Region najbardziej dotknięty to Afryce Subsaharyjska. Na malarię zapada tam rocznie ok. 200 mln ludzi; 600 tys. zakażonych umiera, a 80% z nich to dzieci poniżej piątego roku życia. Łatwo zrozumieć, że w tych warunkach zmutowany gen wciąż zachowuje swoją wartość adaptacyjną. Jednak procesy ewolucyjne odznaczają się dużą bezwładnością. Amerykanie pochodzenia afrykańskiego od wielu pokoleń nie są narażeni na malarię, lecz nadal w tej grupie ok. 8% dzieci (1,5% wszystkich noworodków w USA) rodzi się jako nosiciele allelu, który chronił ich przodków w dawnej ojczyźnie. W warunkach, w których żyją obecnie, allel nie przynosi już żadnej korzyści, natomiast stanowi bardzo realne zagrożenie, powodując amemię sierpowatą u nosicieli homozygotycznych. To samo dotyczy imigrantów z krajów Afryki Równikowej w Zjednoczonym Królestwie czy Portugalii.

Z drugiej strony – migranci z regionów, gdzie presja selekcyjna wciąż działa znacznie silniej niż w typowych społeczeństwach industrialnych, mogą być nosicielami alleli, których wartość przystosowawcza zostaje zachowana mimo zmiany otoczenia. Sami zwykle ponoszą pewne straty, bo migracja oznacza znalezienie się w warunkach odległych od macierzystego optimum przystosowawczego, ale zastrzyk alleli wypromowanych przez dobór naturalny może być z kolei cenny dla populacji, która wchłonęła migrantów. Dokładny rachunek zysków i strat niełatwo podsumować, ale jedno nie ulega wątpliwości: migracje są także siłą napędową ewolucji w skali regionalnej, a kto wie, czy nie zmniejszają obciążenia genetycznego populacji odczuwających negatywne konsekwencje „uwolnienia się” od doboru naturalnego.

W kolejnym, ostatnim odcinku tego cyklu postaramy się podsumować dyskusję i udzielić odpowiedzi na tytułowe pytanie.

Przypisy

  1. Marcin Czerwiński opisywał w jednym z wpisów skutki krzyżowania wsobnego między członkami rodu Habsburgów. W tym przypadku kumulacja szkodliwych mutacji doprowadziła do upadku kilku gałęzi dynastii. Patrz też Ceballos & Alváres 2013. ↩︎
  2. Co ciekawe, choć populacja neandertalczyków w zachodniej Eurazji nigdy nie była zbyt liczna i odznaczała się niską różnorodnością genetyczną, u jej przedstawicieli zachowały się wszystkie typy układu ABO (jak wynika z analizy zrekonstruowanych genotypów neandertalskich). ↩︎
  3. Inny scenariusz wart rozważenia to kombinacji dryfu i presji selekcyjnej wśród przybyszów z Beringii, jeśli duża częstość występowania typu O dawała jakiś konkretny zysk w szczególnej sytuacji kolonizacji pionierskiej, np. chroniąc przed jakimś ówcześnie rozpowszechnionym patogenem lub pomagając unikać zatruć pokarmowych w nowym środowisku. Jednak ewentualne korzyści adaptacyjne, które mogłyby premiować grupę O kosztem innych nie są ani łatwe do wskazania, ani jednoznaczne; zob. też Halverson & Bolnick 2008. ↩︎

Lektura dodatkowa

Opisy ilustracji

Ryc. 1. Nieco surrealistyczne impresje sztucznej inteligencji (MS Copilot) na temat dryfu genetycznego i wąskiego gardła populacyjnego. Czasem nie potrafię odgadnąć, co właściwie kierowało skojarzeniami/halucynacjami chatbota generującego obraz.
Ryc. 2. Dzieci z ludu Janomamów (lasy deszczowe Amazonii w południowej Wenezueli). Podobnie jak u wszystkich innych rdzennych ludów Ameryki Południowej, u Janomamów występuje wyłącznie grupa krwi O. Źródło: Wikimedia (licencja CC BY-SA 3.0).