Czy naukowcy doznają „ odkrywczych objawień”, czy też dokonują odkryć dzięki permanentnej analizie problemu i czy punktoza w dokonywaniu takich odkryć pomaga?

Przyjęło się uważać, że objawienie jest zarezerwowane w zasadzie tylko dla proroków czy świętych. Jednak określenie wizjoner raczej nie ma konotacji religijnych. Skąd przychodzą więc naukowcom do głowy rozwiązania problemów? Niekiedy oczywiście wynikają z prowadzenia systematycznych analiz, w trakcie których dojście do rozwiązania jest konsekwencją mozolnej, logicznej pracy. Czasem opierają się o działania na zasadzie prób i błędów, co oczywiście nie oznacza, że wybór tego, co jest próbowane, odbywa się w sposób chaotyczny. Jednak historia nauki obfituje w anegdoty, zmyślone historie, jak również opisy udokumentowane, które sugerują, że niektóre odkrycia przypominają bardziej objawienia/wizje niż odkrycia dokonane metodą naukową. Co albo kto jest źródłem incepcji (infekcji koncepcyjnych), które spotykają naukowców? Zapewne najprostszą odpowiedź będzie taka, że świat, który obserwują. Czy nie jest to jednak spłycanie zjawiska – sprowadzanie go do banału?

Punktoza to potoczne określenie zjawiska polegającego na tym, że naukowcy prowadzą nie takie działania, które dają poważne efekty naukowe, tylko takie, które przynoszą dużo punktów w systemach oceny. Takie systemy oceny otwierają drzwi do awansów naukowych, ale nie musi to sprzyjać autentycznemu rozwojowi naukowemu.

Sny Kartezjusza, Afreda Wallace’a i Otto Loewiego

Kartezjusz twierdził, że słynne „Cogito ergo sum – Myślę więc jestem” to owoc snu – medytacji, w czasie której odkrył, że możemy śnić cały czas, a to co uznajemy za nas otaczające, może być złudzeniem. Może coś być na rzeczy, skoro twórcy takich filmów, jak „Matrix” czy „Incepcja” inspirowali się sceptycyzmem Kartezjusza.

Alfred Russel Wallace oznajmił, że idea ewolucji naturalnej nawiedziła go we śnie. Był antyszczepionkowcem i jak wielu naukowców jego czasów interesował się np. spirytualizmem, co dla niektórych stanowi argument, by podważać jego wersję o śnie ewolucjonistycznym.

Wiele opisów jest jednak bardzo wiarygodnych. Laureat nagrody Nobla Otto Loewi opisał, że zaplanował we śnie, jak badać przewodnictwo nerwowo-mięśniowe – szerzej opisał synapsy. Pierwszej nocy miał wizję. W ciągu dnia nie mógł sobie przypomnieć planu eksperymentu. Na szczęście kolejnej nocy wizjonerski sen się powtórzył, albo nawet był kontynuowany.

„W noc poprzedzającą Niedzielę Wielkanocną [1920 r.] obudziłem się, zapaliłem światło i zapisałem kilka notatek na maleńkim kawałku cienkiego papieru. Potem znowu zasnąłem. O szóstej rano przyszło mi do głowy, że w nocy zapisałem coś ważnego, ale nie udało mi się rozszyfrować bazgrołów. Następnego wieczoru o 15:00 pomysł powrócił. Był to projekt eksperymentu mającego na celu ustalenie, czy hipoteza o transmisji chemicznej, którą wypowiedziałem 17 lat temu, była słuszna. Natychmiast wstałem, poszedłem do laboratorium i przeprowadziłem prosty eksperyment na sercu żaby, zgodnie ze schematem nocnym.”

Ciekawe, że Loewi stwierdził, iż idea ta tliła się w jego umyśle przez siedemnaście lat.

Inny noblista, Niels Bohr opowiadał, że elektrony krążące wokół jądra atomowego, podobnie jak planety wokół Słońca, przyszły mu do głowy we śnie. Testując swoją „wyśnioną” hipotezę, stwierdził, że struktura atomowa jest w rzeczywistości do niej podobna.

Bohr jak na fizyka wypowiadał się w sposób, który burzy pojmowanie racjonalności.

„Musimy jasno powiedzieć, że w przypadku atomów języka można używać tylko tak, jak w poezji.”

Zwykło się uważać, że poezja jest miejscem, w którym zatraca się granicę między racjonalnością, a metafizyką. Poezja jest miejscem bliższym snów, a fizyka jawy. Tymczasem fizyk stwierdził, że istnieje związek między poezją a nauką.

Mendelejew, Elias Howe, August Kekulé, Srinivasa Ramanujan

Mendelejew tak opisuje swoją wizję, kiedy wpadł na pomysł układu okresowego.

Widziałem we śnie tablicę, na której wszystkie pierwiastki układały się zgodnie z wymaganiami. Budząc się, od razu zapisałem to na kartce papieru. Poniżej jego notatki (pamiętnik).

Ktoś złośliwy mógłby przypomnieć, że doktorat Mendelejewa dotyczył metod otrzymywania etanolu. Ale raczej nie wypada tym tłumaczyć jego odkrycia.

Amerykański wynalazca Elias Howe poświęcił wiele czasu, próbując stworzyć „maszynę do zszywania tkanin”. Wreszcie przytrafił mu się dziwny sen. W śnie został porwany przez kanibali. Dostał 24 godziny na zbudowanie maszyny do szycia. Nie zrobił tego, został więc nabity na włócznię z dziurami na obydwu końcach. Wtedy wynalazł maszynę do szycia nazwaną stębnówką.

August Kekulé odkrył strukturę benzenu również w czasie wizji sennej. Benzen śnił mu się jako wąż zjadający swój ogon. Na marginesie wąż zjadający swój ogon był w Europie znany głownie jako symbol alchemików (uroboros). Związek uroborosa z alchemią próbował nawet wyjaśnić Carl Jung.

Kekulé tak opisał swój sen:

Odwróciłem krzesło do kominka i pogrążyłem się w półśnie. Znowu atomy harcowały przed moimi oczami. Tym razem mniejsze grupy trzymały się skromnie z tyłu. Moje duchowe (mentalne) oko, wyostrzone przez powtarzające się podobne wizje, rozróżniło teraz większe twory o różnorodnym kształcie. Długie szeregi, kilkakrotnie ściśle ze sobą złączone, wszystko w ruchu, wijące się wężowato i skręcające się. Patrzę! Co się stało? Jeden z węży chwycił swój własny ogon i szyderczo kręcił się przed moimi oczami. Obudziłem się jak rażony piorunem i resztę nocy spędziłem na poznawaniu wniosków z tej hipotezy.

Friedrich August Kekulé – Biography, Facts and Pictures (famousscientists.org)

Srinivasa Ramanujan jest uznawany za ważnego matematyka, chociaż nie miał pełnego wykształcenia naukowego (zmarł niestety młodo). Twierdził, że bóstwo Hindu Namagiri ukazywało mu się w snach podpowiadając matematyczne dowody. Jeden z jego snów miał być taki.

„Podczas snu przeżyłem coś niezwykłego. We śnie pojawił się czerwony ekran utworzony przez płynącą krew. Obserwowałem go. Nagle czyjaś dłoń zaczęła pisać na ekranie. Cały zamieniłem się w uwagę. Ręka ta napisała wiele całek eliptycznych. Utkwiły mi one w pamięci. Gdy tylko się obudziłem, poświęciłem się pracy.”

Historia Ramanujana została sfabularyzowana w filmie „Człowiek, który znał nieskończoność”.

Nie wszystkie historie o snach naukowców są równie wiarygodne, ale nie tylko w trakcie snów dokonywali odkryć w odmiennych stanach świadomości.

Albert Einstein i Nikola Tesla mieli doświadczać tzw. świadomych snów, dzięki którym dokonywali odkryć. W przypadku Einsteina trzeba uważać, żeby nie pomylić powieści (noweli) (Einstein’s Dreams), w której w sposób literacki, ale mający niewiele z rzeczywistością, opisano odkrycie teorii względności.

Podobnie trzeba traktować bardzo krytycznie historię o tym, że sen o schodach przyczynił się do odkrycia struktury DNA przez Jamesa Watsona. Watson, kiedy opisuje bardzo szczegółowo odkrycie, nic o tym ni mówi.

Zjawisko to dotyczy nie tylko naukowców. Muzycy (Paul McCartney “Yesterday”), pisarze (Mary Shelley “Frankestein”), poeci, reżyserzy (James Cameron Terminator, Stephen King “Misery”), malarze (Salvador Dali), informatycy (Larry Page – Google) i wielu innych „zostali nawiedzenie w snach ideami”.

Oczywiście sam proces dokonywania takich odkryć nie musi mieć miejsca we śnie. Anegdoty o jabłku, które uderzyło w głowę Newtona czy wannie, w której miał siedzieć Archimedes mają o tyle związek z rzeczywistością, że za pomocą symbolicznych historii pokazują, iż umysły tych odkrywców permanentnie analizowały problem.

Zapewne wszystkie te osoby były skupione na problemie, którym się zajmowały przez wiele tygodni, a nawet miesięcy, przechodząc w tym czasie w stan z pogranicza analizy i medytacji. Nie da się ukryć, że nie jest to coś czego, uczą w podręcznikach metodologii prowadzenia badań naukowych. Jest to raczej połączenie bardzo długotrwałej wręcz obsesyjnej analizy z „iskrą bożą”.

Podsumowanie czyli czy można mieć takie sny, albo dokonywać takich odkryć żyjąc w punktozie…

Oczywiście większość naukowców to ani Kartezjusze, ani Mendelejewowie, ale wniosek z powyższych przykładów płynie jeszcze jeden. Ciągłe wikłanie naukowców w dziesiątki spraw administracyjnych, punktoz itp. nigdy nie będzie służyło takiemu skupieniu się na problemie, na jakie mogli sobie przyzwolić badacze, których rozwiązania opisano w powyższych przykładach. Mogą się raczej przyśnić punkty niż odkrycia.

Splątanie kwantowe, czyli coś, co działa, ale nie wiadomo dlaczego

Inne wpisy o powiązanej tematyce:

Kryptografia kwantowa, czyli w poszukiwaniu absolutu
Chaos, czyli efekt motyla
Miara wszechrzeczy, czyli pofilozofujmy
Liczby trochę mniejsze od nieskończoności

Czy fizyka jest nudna? Dla większości jest nudna, bo co jest ciekawego w równi pochyłej albo w prawie Archimedesa? Istnieją jednak dziedziny fizyki, które budzą szczególne zainteresowanie. Dotyczy to szczególnie zagadnień z pogranicza science-fiction, a wręcz zaprzeczających zdrowemu rozsądkowi: teoria względności, teoria kwantów, rozszczepienie atomu, nadprzewodnictwo czy fuzja jądrowa. Ostatnio na medialnym topie znalazło się splątanie kwantowe, wyróżnione (jeśli można tak powiedzieć o dziedzinie nauki) Nagrodą Nobla z fizyki za 2022 rok. Otrzymał ją profesor Anton Zeilinger [2], austriacki fizyk-teoretyk z Uniwersytetu Wiedeńskiego (na spółkę z Alainem Aspectem i Johnem F. Clauserem). Profesor Zeilinger jest doktorem honoris causa Uniwersytetu Gdańskiego. On i drugi z noblistów – Alain Aspect od lat współpracują z Międzynarodowym Centrum Teorii Technologii Kwantowych Uniwersytetu Gdańskiego.

Ryc. 1 Profesor Anton Zeilinger. Źródło: Austriacka Akademia Nauk

Czym jest splątanie kwantowe?

Najprościej można powiedzieć, że jeśli dwa obiekty kwantowe, na przykład atomy, po uprzednim schłodzeniu i przygotowaniu w odpowiednich stanach kwantowych, “zetkniemy” ze sobą w pewien szczególny sposób, pozwalając oddziaływać im elektromagnetycznie, poprzez wymianę fotonów lub pól kwantowych, a następnie rozdzielimy, to stają się jednym obiektem kwantowym, a wartość pomiaru wielkości kwantowej jednej cząstki jest ściśle skorelowana z wartością tej wielkości drugiej cząstki, niezależnie od dzielącej je odległości tak, aby stan układu (superpozycja) pozostał bez zmian.

Splątanie fotonów można uzyskać za pomocą kryształów nieliniowych (Ryc. 2). Wpuszczając do takiego kryształu jeden foton możemy uzyskać dwa fotony splątane, drgające w prostopadłych do siebie płaszczyznach. Następnie, za pomocą światłowodu, możemy oddalić te fotony na znaczną odległość i przeprowadzić pomiar.

“Niezależnie” rzeczywiście oznacza “niezależnie”, bo odległości mogą być kosmiczne a ich wpływ na efekt splątania – żaden. Mierząc stan cząstki, która mamy pod ręką “mierzymy”, natychmiast i zdalnie, stan cząstki praktycznie nieskończenie odległej. Czy to oznacza, że możemy przenosić informację z prędkością większą od prędkości światła? Niestety nie, tu nadal obowiązuje zasada wynikająca z równań Einsteina, że prędkość światła jest największą prędkością, jaką może osiągnąć materia lub energia. Obala to mit, że tą metodą możemy transmitować informację z nieskończoną prędkością. Można natomiast powiedzieć, że dokonujemy w pewnym sensie teleportacji informacji. Odczytując stan jednej cząstki po prostu wiemy, jaki jest stan drugiej cząstki. Na przykład para splątanych fotonów ma przeciwne polaryzacje. Przed dokonaniem pomiaru każdy foton jest w nieoznaczonym stanie kwantowym, zgodnie z zasadą nieoznaczoności Heisenberga. Przed pomiarem znamy stan całego układu (przeciwne polaryzacje fotonów), nie znając stanów składników tego układu (który foton drga w polaryzacji poziomej H, a który w pionowej V?). Układ ten jest jednym obiektem kwantowym. Dopiero sam fakt pomiaru pierwszego fotonu determinuje stan drugiego fotonu. Mówiąc inaczej, generując strumień par niesplątanych fotonów, wysyłając każdy foton z pary do innego obserwatora (A i B) i mierząc parami ich polaryzację otrzymamy zgodność polaryzacji fotonów A i B w 50% przypadków, co jest wynikiem intuicyjnie przewidywalnym. Jeśli natomiast fotony w każdej parze będą przed wysłaniem splątane, to korelacja będzie stuprocentowa.

Splątane fotony przed odczytem ich wartości splątania znajdują się w stanie tzw. superpozycji kwantowej, to znaczy, że posiadają jednocześnie wszystkie stany możliwe do odczytania. Przyjmując, że polaryzacja H oznacza 0 (zero), a polaryzacja V oznacza 1, splątane fotony mają jednocześnie wartość 0 i 1. Dopiero sam akt odczytu (jednego fotonu) determinuje ostatecznie wartości polaryzacji obu fotonów.

Pierwsze doświadczenia splątania kwantowego przeprowadzono w 1972 roku, a w 1998 zespół Nicolasa Gisina z Genewy wytworzył i utrzymał splątanie pary fotonów po przesłaniu na odległość 10 km. Wspomniany wcześniej Anton Zeilinger utrzymał splątanie fotonów odległych o 144 kilometry. Obecnie splątanie realizuje się na odległości liczone w tysiącach kilometrów, między Ziemią a wyspecjalizowanymi satelitami. O tym będzie później, przy okazji opisu kwantowej dystrybucji klucza szyfrującego (QKD).

Idea splątania kwantowego doprowadziła grupę włoskich fizyków z turyńskiego Narodowego Instytutu Badań Meteorologicznych (INRiM) do wniosku, że czas jest złudzeniem i zaczyna biec dopiero po interakcji obserwatora z (umownym) zegarem. Jest to wniosek filozoficzny, niepoparty dowodem matematycznym, a tym bardziej doświadczeniem, ale należy przyznać, że jego piękno jest niezaprzeczalne.

Trochę historii

Wszystko zaczęło się od Alberta Einsteina. W 1935 roku opublikował on, wspólnie z Borysem Podolskim i Nathanem Rosenem pracę mającą dowieść, że mechanika kwantowa nie jest teorią kompletną. Powszechnie bowiem wiadomo, że Einstein był wrogiem teorii kwantowej, a szczególnie jej interpretacji probabilistycznej. Mawiał nawet, że “Bóg nie gra w kości”. W wyniku przeprowadzonego eksperymentu myślowego zwanego paradoksem EPR (Einsteina-Podolskiego-Rosena) pokazano na gruncie matematycznym mechaniki kwantowej, że w pewnych sytuacjach cząstki kwantowe powinny natychmiast reagować na zmianę stanu swojego splątanego partnera, nawet jeśli ten znajduje się w dowolnie dużej odległości. Przeczyłoby to aksjomatowi, że informacja nie może być przekazywana z prędkością większą od prędkości światła. „Księżyc istnieje także wtedy, gdy na niego nie patrzę”, mawiał Einstein i nazwał splątanie „upiornym oddziaływaniem na odległość”. Inny fizyk teoretyczny, jeden z ojców-założycieli mechaniki kwantowej, Erwin Schrödinger (ten od kota), zainspirowany eksperymentem myślowym EPR, jako pierwszy wprowadził termin „splątanie” i stwierdził, że wiedza o układzie fizycznym (na przykład dwa splątane fotony) nie oznacza wiedzy o jego częściach (poszczególnych fotonach). Było to prorocze spostrzeżenie, docenione dopiero pod koniec XX wieku.

Ryc. 2 Ilustracja splątania fotonów po przejściu przez kryształ o nieliniowej charakterystyce.
(Wikimedia Commons/J-Wiki [GNU Free Documentation License – domena publiczna])

Natura splątania kwantowego

Naturę splątania kwantowego próbował wyjaśnić Einstein, wprowadzając pojęcie zmiennych ukrytych czyli informacji zawartych w fotonach przed osiągnięciem stanu splątanego. Te właśnie zmienne ukryte miałyby oddziaływać później na splątane fotony. Teoria ta została obalona przez Johna Stewarta Bella, który sformułował w 1964 twierdzenie (zwane nierównościami Bella) mówiące, że “Żadna lokalna teoria zmiennych ukrytych nie może opisać wszystkich zjawisk mechaniki kwantowej.”.

Najciekawszą teorią tłumaczącą stan splątania kwantowego, bazującą na pracy Stephena Hawkinga z 1964 roku o tym, że czarne dziury wcale nie są takie “czarne” i emitują promieniowanie, jest hipoteza równoważności splątania kwantowego z tunelami czasoprzestrzennymi, tzw. tunelami Einsteina-Rosena. Oba wymienione pojęcia wynikają wprost z dwóch artykułów Alberta Einsteina z 1935 roku, ale Einstein nawet nie podejrzewał, że mogą być one ze sobą powiązane. Tunele czasoprzestrzenne wynikają z jednego z rozwiązań równań Einsteina zaproponowanego przez niemieckiego fizyka Karla Schwarzschilda, genialnego, przedwcześnie i tragicznie zmarłego geniusza. Rozwiązanie było na tyle dziwne, że dopiero w latach 60. XX wieku zorientowano się, że opisuje ono tunel czasoprzestrzenny łączący dwie czarne dziury. Juan Macaldena [1], fizyk teoretyczny z Princeton uważa, że dzięki splątaniu kwantowemu tworzy się geometryczne połączenie między dwoma czarnymi dziurami, które poprzez swoje wnętrze tworzą tunel czasoprzestrzenny. Dwie czarne dziury, wyglądające z zewnątrz jak dwa niezależne obiekty, w rzeczywistości mają wspólne wnętrze. Oczywiście użyte pojęcie “geometryczny” nie oznacza naszej zwykłej geometrii trójwymiarowej ale wymiarów wyższych, w których nasz trójwymiarowy Wszechświat jest zanurzony.

Splątanie kwantowe w praktyce

Obiecującym zastosowaniem splątania kwantowego jest kryptografia kwantowa, a konkretnie bezpieczna dystrybucja kluczy kryptograficznych. Odbywa się to za pomocą satelity, który generuje klucz i rozsyła go laserowo do odbiorców. Specyfika splątania gwarantuje 100% zabezpieczenie przed podsłuchem lub sfałszowaniem, gdyż każda próba ingerencji, na przykład odczyt albo zmiana treści, w wysyłaną wiązkę fotonów spowoduje niejako zniszczenie zawartej w niej informacji. Elementem protokołu jest informacja kontrolna, której pozytywna weryfikacja gwarantuje brak ingerencji w przesyłany strumień informacji, co oznacza, że nie nastąpił podsłuch transmisji. Po pomyślnej weryfikacji w węźle odbiorczym, uzyskujemy (wynikającą z praw mechaniki kwantowej) gwarancję poufności klucza.

Kwantowa dystrybucja klucza (Quantum Key Distribution QKD) powoli staje się pełnoprawnym elementem ekosystemu szyfrowania danych. W dalszym ciągu kanał przesyłania danych jest klasycznym kanałem cyfrowym a kanał dystrybucji klucza szyfrującego jest kanałem kwantowym. Należy odnotować znaczny wkład polskich badaczy w rozwój QKD. Najdłuższe w Europie łącze QKD jest właśnie testowane między Poznaniem a Warszawą. Jeden z najlepszych protokołów QKD wykorzystujących splątanie fotonów o nazwie E91 jest dziełem polskiego fizyka Artura Ekerta.

Źródła:

Równoważność splątania kwantowego i tuneli czasoprzestrzennych
https://www.projektpulsar.pl/struktura/2161853,1,splatanie-i-tunele-czasoprzestrzenne-faktycznie-sa-rownowazne.read

Wywiad z Antonem Zellingerem https://wyborcza.pl/7,75400,5801859,o-dziwacznych-prawach-mechaniki-kwantowej-opowiada-guru.html

Wywiady z noblistami 2022
https://optics.org/news/13/10/6

Intercontinental, Quantum-Encrypted Messaging and Video

https://physics.aps.org/articles/v11/7

Global quantum internet dawns, thanks to China’s Micius satellite

https://newatlas.com/micius-quantum-internet-encryption/53102/?itm_source=newatlas&itm_medium=article-body

Czy fizyka nicości leży u podstaw wszystkiego?

https://przystaneknauka.us.edu.pl/artykul/czy-fizyka-nicosci-lezy-u-podstaw-wszystkiego

https://space24.pl/satelity/splatanie-kwantowe-z-poziomu-nanosatelity-nowy-rozdzial-badan-analiza

Reaktor jądrowy MARIA – 1. Historia i konstrukcja

Polska powoli przymierza się do budowy pierwszej elektrowni jądrowej. Jak na razie wszystko jest w fazie bardzo wstępnej i nie wiadomo, kiedy budowa ruszy. Tymczasem historia polskich reaktorów jądrowych sięga lat 50. XX w. Pierwszym z nich była EWA. Nazwa ta jest akronimem pochodzącym od „eksperymentalny – wodny – atomowy”. Oczywiście nie była to oryginalna polska konstrukcja. Tego typu reaktory doświadczalne sprzedawał wtedy krajom socjalistycznym ZSRR. EWA działała z przerwami do 1995, kiedy to została planowo wyłączona.

Obecnie jedynym działającym na terenie Polski reaktorem jest znajdująca się w Otwocku-Świerku koło Warszawy MARIA (ta nazwa pochodzi oczywiście od imienia Marii Skłodowskiej-Curie). Budowę rozpoczęto w 1970 r., stan krytyczny został osiągnięty w 1974. Reaktor pracował do 1985, kiedy to rozpoczęto jego modernizację. Ponownie uruchomiony w 1992 r. pracuje do dziś. Nie jest to oczywiście reaktor produkujący energię elektryczną. Służy do badań, ale też doskonale na siebie zarabia.

Wnętrze reaktora MARIA
Widoczny niebieski kolor to promieniowanie Czerenkowa (*)

Źródło: Wikimedia, licencja: GNU FDL

Konstrukcja reaktora

Nie da się ukryć, że reaktor MARIA jest bardzo starą konstrukcją, jedną z pierwszych, jakie powstały w Związku Radzieckim na samym początku programu atomowego. Na szczęście okazuje się, że reaktory, w których funkcję moderatora i chłodziwa pełni woda, okazały się być w zasadzie bezawaryjne. Rdzeń reaktora umieszczono w zbiorniku z wodą destylowaną, a całość otoczona jest ścianami z betonu o grubości 2,2 m. Jako paliwo pierwotnie stosowano uran wzbogacony w izotop U-235 w 80%, dziś stosuje się paliwo niskowzbogacone, w którym zawartość U-235 wynosi mniej niż 20%. Stosowanie takiego paliwa nie wpływa na efektywność pracy samego reaktora, natomiast zdecydowanie poprawia bezpieczeństwo. Maria nie ma znaczenia energetycznego, ponieważ jest reaktorem badawczo-produkcyjnym. Całość wytwarzanego ciepła odprowadzana jest do atmosfery.

Obok rdzenia znajdują się dwie komory izotopowe (tzw. gorące). Tam właśnie przeprowadza się prace z materiałami, które wcześniej były napromieniowane w rdzeniu reaktora. Wszelkie działania z nimi wykonuje się zdalnie, przy użyciu specjalnych manipulatorów, aby zminimalizować możliwość napromieniowania naukowców wykonujących eksperymenty. Oczywiście we wnętrzu komory gorącej nie może przebywać człowiek. Jego miejsce znajduje się na zewnątrz, jest oddzielony od niebezpiecznej przestrzeni grubą warstwą tłumiącego promieniowanie szkła ołowianego.

Dodatkowo z reaktora wyprowadzonych jest sześć poziomych kanałów, które są źródłem wiązek neutronów wykorzystywanych do celów badawczych.

O tym, co produkuje MARIA – w kolejnym odcinku.

(*) Promieniowanie Czerenkowa – promieniowanie elektromagnetyczne emitowane przez naładowane cząstki poruszające się w danym środowisku z prędkością większą od prędkości fazowej światła w tym ośrodku. Analogią może być fala uderzeniowa generowana przez samolot przekraczający prędkość dźwięku.

(c) by Mirosław Dworniczak
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem. Linkować oczywiście można.