Labirynt ewolucji. Część 3: Czy goryl obalił Darwina?

Inne części tego cyklu
1. Gatunek jako pojęcie nieostre
2. Allele na łasce dryfu
4. Gatunek patchworkowy

Sprzeczne zeznania genów

Kilkanaście lat temu zsekwencjonowano i złożono w całość genom goryla nizinnego (Gorilla gorilla gorilla), dzięki czemu można było, dzięki analizie porównawczej DNA, przetestować hipotezy dotyczące drzewa rodowego człowiekowatych (Hominidae) − rodziny naczelnych, która interesuje nas szczególnie, ponieważ sami do niej należymy (wraz z szympansami, gorylami i orangutanami). Od tej pory, dzięki powiększaniu się bazy danych genomowych, wykonano wiele podobnych badań. Ich wyniki są zgodne: średnio ok. 70% badanych sekwencji wskazuje, że najbliższymi żyjącymi krewnymi człowieka (Homo sapiens) są szympansy (Pan) i oczywiście nawzajem: najbliższym krewnym szympansa zwyczajnego (P. troglodytes) jest bonobo (P. paniscus), a w następnej kolejności człowiek.

Ale skoro tak jest, to dlaczego to pokrewieństwo dotyczy tylko 70% genomu? Dlaczego nie 100%? I co z pozostałymi 30%? Otóż ok. 15% sekwencji wskazuje, że człowiek jest bliżej spokrewniony z gorylami niż z szympansami, a pozostałe 15% − że goryle i szympansy są bliżej spokrewnione z sobą nawzajem niż z człowiekiem. I bądź tu mądry! Tak jak w przypadku sprzecznych zeznań świadków, pojawia się pytanie: komu wierzyć?

Ryc. 1.

Przedwczesna radość kreacjonistów

Wyniki te uradowały kreacjonistów. Niejaki Jeffrey P. Tomkins, PhD (kreacjoniści posiadający stopnie naukowe zawsze eksponują ten fakt), opublikował na portalu Instytutu Badań nad Stworzeniem (Institute for Creation Research) tekst pod tytułem „Genom goryla to zła wiadomość dla ewolucji”.1 Stwierdził w nim, że ponieważ różne fragmenty ludzkiego genomu mają najwyraźniej różną genealogię, koncepcja drzewa rodowego, będąca rzekomo podstawowym dogmatem „darwinizmu”, jest wewnętrznie sprzeczna. Wniosek: całą teorię ewolucji należy uznać za zdyskredytowaną, wyrzucić na śmietnik i przyjąć jedyną możliwość alternatywną:

Wyniki te nadal wyraźnie wspierają oparty na Księdze Rodzaju biblijny pogląd o osobno stworzonych rodzajach i ludzkości stworzonej na obraz Boga.

Jest to typowy przypadek posługiwania się strategią „chochoła” (straw man). Zamiast rzeczywistej teorii ewolucji Tomkins zaatakował jej karykaturę, którą sam sporządził w taki sposób, żeby łatwo ją obalić. Tymczasem primo: nikt z poważnych naukowców nie twierdzi, że model drzewa rodowego przedstawia całą prawdę o historii organizmów. Secundo: sama teoria ewolucji przewiduje różne sytuacje, w których model ten napotyka na trudności. Tomkins zdaje sobie z tego sprawę, ale stara się stworzyć wrażenie, że przewidywania teorii są problemem dla niej samej. Tertio: Tomkins rozumuje na zasadzie fałszywej dychotomii: jakikolwiek defekt teorii ewolucji (obojętne – rzeczywisty czy urojony) interpretuje jako argument na rzecz wyznawanego przez siebie kreacjonizmu młodoziemskiego, jak gdyby wybór ograniczał się do dwu możliwości. Na tej samej zasadzie płaskoziemca mógłby twierdzić, że „teoria kulistej Ziemi” została obalona, ponieważ precyzyjne pomiary ujawniły spłaszczenie biegunowe globu. Ziemia nie jest idealną kulą, czyli nie jest kulista; prawdziwa zatem musi być teoria alternatywna, głosząca, że Ziemia ma kształt naleśnika. Logiczne, prawda?

A teraz zastanówmy się na poważnie, dlaczego wyniki są, jakie są.

Polimorfizmy i ich znaczenie

Jeżeli w populacji danego gatunku jakieś miejsce w genomie (locus) ma dwa lub więcej wariantów (alleli), to sytuację taką nazywamy polimorfizmem. Zwykle wymaga się przy tym, żeby wariant miał częstość występowania przynajmniej 1%, w przeciwnym razie mówimy o „rzadkiej mutacji”. Oczywiście każdy polimorfizm zaczyna się wskutek zajścia mutacji, która z początku jest rzadka, ale – o ile ma szczęście – może, szerząc się w populacji, zostać uznana za allel polimorficzny. Ile takich miejsc ma w genomie gatunek Homo sapiens? Kilkanaście milionów (plus ok. 70 mln znanych „rzadkich mutacji” i co najmniej drugie tyle nieznanych). Ogromna większość z nich to tzw. polimorfizmy pojedynczego nukleotydu, czyli miejsca, gdzie mutacja punktowa zmieniła tylko jedną „literę kodu genetycznego”. Mniej jest wstawek lub ubytków krótkich sekwencji DNA, a najmniej – mutacji strukturalnych, obejmujących długie sekwencje.

Jak poważne znaczenie mają te polimorfizmy? W genomie ludzkim zmienność dotyczy ok. 11 tys. pozycji zmieniających skład kodowanego białka (podstawienie innego aminokwasu) lub skracających jego łańcuch. Około pół miliona polimorfizmów dotyczy regionów regulacyjnych; nie mają one wpływu na budowę białek, ale potencjalnie mogą modyfikować ekspresję genów. Jeśli tak się dzieje, to mają znaczenie dla rozwoju, wyglądu i funkcjonowania organizmu, a zatem mogą także wpływać na przeżywalność i sukces reprodukcyjny. Dobór naturalny będzie faworyzował allele korzystne, a eliminował szkodliwe. Ale ok. 90% genomu (i podobna część polimorfizmów) ewoluuje neutralnie – występujące tam różnice są funkcjonalnie obojętne. Jak widzieliśmy w poprzednim odcinku, polimorfizmy neutralne nie mogą istnieć wiecznie. Dryf genetyczny nieuchronnie powoduje znikanie konkurencyjnych alleli, aż pozostaje tylko jeden.

Dryfując bez pośpiechu

Jak długo może istnieć taki polimorfizm? Oczekiwany czas od pojawienia się nowego allelu neutralnego do jego ewentualnego utrwalenia się w populacji wynosi 4Ne pokoleń. Ne oznacza tzw. efektywną wielkość populacji, która (upraszczając nieco) nie oznacza faktycznej liczebności populacji, ale jest miarą jej zróżnicowania genetycznego. Mimo że jesteśmy wyjątkowo licznym gatunkiem ssaka (ponad 8,1 mld osobników), nasza populacja efektywna jest rzędu 10 tys. (i odzwierciedla naszą niewielką różnorodność genetyczną). Liczba ta była większa i wynosiła prawdopodobnie ok. 35 tys. dla gatunku, który był ostatnim wspólnym przodkiem goryli, ludzi i szympansów; pozostawała też względnie stała we wczesnej historii człowiekowatych. Szacuje się, że średni odstęp między pokoleniami wynosił dla naszych dalekich przodków ok. 22 lat. Jeśli więc u wspólnego przodka pojawiła się jakaś mutacja neutralna, która ostatecznie utrwaliła się przez dryf, to oczekiwany czas takiego utrwalania się można oszacować na 4 × 35000 × 22 lata, czyli 3,08 mln lat. Zaokrąglijmy to do trzech milionów lat. Tyle czasu średnio utrwala się neutralny allel przy powyższych założeniach. Należy tylko wziąć pod uwagę, że rozkład statystyczny jest w tym przypadku asymetryczny i ma duże odchylenie standardowe (ok. 2,15 Ne). Nie chcę się wgłębiać w statystykę, zaznaczę więc tylko, że spora część polimorfizmów neutralnych zniknie już po milionie lat, a część będzie pokutowała w populacji jeszcze po pięciu milionach lat. Jest to tzw. oczekiwanie neutralne.

Jeżeli polimorfizm pojawił się u wspólnego przodka goryli, ludzi i szympansów i nie zdążył zaniknąć przed rozejściem się linii rodowych goryli oraz reszty wspomnianej grupy (co nastąpiło 10−8 mln lat temu), to odziedziczyły go obie linie potomne: goryla i ludzko-szympansia. Gdyby następnie każda z nich istniała odpowiednio długo jako jeden gatunek, to w końcu dryf genetyczny utrwaliłby niezależnie w każdej z nich jeden z konkurencyjnych alleli – być może ten sam w obu przypadkach, być może inny w każdym przypadku. Gdyby były one odmienne, to badając genomy gatunków potomnych po milionach lat, stwierdzilibyśmy, że mają one w jakimś miejscu genomu fragmenty różne, ale sprowadzalne do wspólnego przodka. Ten fragment drzewa rodowego fragmentów DNA zawierałby jedno rozwidlenie i pasowałby do drzewa rodowego gatunków.

Bałagan w DNA, czyli skutki szybkiej ewolucji

Jednakże jakieś 2,5−3 mln lat później linia ludzko-szympansia rozszczepiła się na dwie odnogi: jedną reprezentowaną dziś przez rodzaj Homo i drugą – przez rodzaj Pan. Wiele polimorfizmów odziedziczonych po wspólnym przodku z gorylami nadal utrzymywało się w populacji i po podziale na linie potomne istniało zarówno u przodka ludzi, jak i u przodka szympansów. Dryf w końcu utrwalił niezależnie po jednym z wariantów w każdej linii. Wyobraźmy sobie teraz, że u przodka wszystkich trzech rodzajów istniał polimorfizm obejmujący dwa warianty jednego locusu, P i Q. Oznaczmy go sobie jako P/Q. W linii gorylej ostatecznie wygrał wariant P, utrwalony przez dryf po kilku milionach lat. W linii ludzko-szympansiej polimorfizm P/Q trwał nadal i został odziedziczony zarówno przez praludzi, jak i przez praszympansy. Ostatecznie jednak w linii ludzkiej wygrał wariant P, a w szympansiej Q. Dzisiejszy badacz, przyglądając się porównywanym genomom, widziałby zgodność między ludźmi a gorylami, podczas gdy szympansy różniłyby się od jednych i drugich. Gdyby natomiast w linii ludzkiej wygrał wariant Q, a w szympansiej P, to odnieślibyśmy wrażenie bliższego pokrewieństwa między gorylami a szympansami, z człowiekiem jako dalszym kuzynem. W obu przypadkach zrekonstruowane drzewo rodowe fragmentów DNA wyglądałoby inaczej niż to, co uważamy za drzewo rodowe gatunków.

Trzy miliony lat lat to akurat dość czasu, żeby połowa polimorfizmów zdążyła zniknąć, a pozostałe były często bliskie zniknięcia. Stąd duże prawdopodobieństwo, że polimorfizm, który przeżył obie kolejne specjacje (podziały na nowe gatunki), zostanie rozstrzygnięty w ten sam sposób u ludzi i szympansów − jako albo P, albo Q w obu liniach. W pierwszym przypadku współczesny badacz nie będzie nawet świadom, że allel Q kiedykolwiek istniał. W drugim – uzna jego występowanie za argument na rzecz bliskiego pokrewieństwa między ludźmi a szympansami (z wyłączeniem goryli). Nie będzie wówczas rozbieżności między drzewem rodowym fragmentów DNA a drzewem rodowym gatunków. Jeśli jednak podziały linii rodowych zachodzą szybciej niż utrwalanie się mutacji neutralnych, odsetek części genomu, których genealogie pokrywają się z genealogią gatunków, będzie co prawda znaczny, ale daleki od 100%. Zjawisko to nazywamy niekompletnym sortowaniem linii rodowych (po angielsku incomplete lineage sorting, w skrócie ILS).

Ryc. 2.

Szczegółowe rachunki pokazują, że to, co obserwujemy, jest ilościowo zgodne z przewidywaniami teoretycznymi. Mało tego – widać inne „efekty specjalne” wynikające z ILS. Mniej więcej 4−5 mln lat po oddzieleniu się od linii ludzkiej linia szympansia podzieliła się na dwa współczesne gatunki. Niektóre stare polimorfizmy dzielone z linią ludzką rozstrzygnęły się niezależnie w każdej z linii potomnych. Skutek jest następujący: ok. 2,5% naszego genomu łączy nas bliżej z szympansem zwyczajnym, a kolejne 2,5% z bonobo. ILS odpowiada także za fakt, że 0,8% naszego genomu ma najbliższe odpowiedniki w linii rodowej orangutanów, które miały z nami ostatniego wspólnego przodka 14−13 mln lat temu.

Uwagi końcowe

To prawda, że gdybyśmy skupili całą uwagę na kilku wybranych fragmentach genomu, ignorując całą resztę, to moglibyśmy dojść do wniosku popartego przez dane genetyczne, że najbliższymi krewnymi ludzi są orangutany, albo – według innych danych – goryle. Dlatego właśnie jest rzeczą ważną, żeby tych danych nie używać wybiórczo. ILS nie jest jakimś wyjątkowym zjawiskiem widocznym tylko w filogenezie człowieka. Wręcz przeciwnie: występuje powszechnie i zawsze trzeba się z nim liczyć, gdy mamy powody sądzić, że w historii badanej grupy organizmów podziały na gatunki następowały szybko po sobie. Tak się dzieje na przykład w przypadku dużych radiacji przystosowawczych dających początek wielkiej liczbie nowych gatunków w stosunkowo krótkim czasie.2

ILS bardziej daje się we znaki w przypadku polimorfizmów „długożyciowych” – nie tylko neutralnych, ale też tych, które utrzymują się znacznie dłużej niż neutralne dzięki doborowi stabilizującemu (patrz poprzednia część cyklu). Dotyczy to np. genów regulujących odpowiedź układu odpornościowego albo determinujących grupy krwi. Natomiast allele utrwalające się szybciej niż neutralne (zwłaszcza te ewoluujące pod silnym naciskiem doboru naturalnego) są znacznie mniej podatne na efekty niekompletnego sortowania linii rodowych.

W następnym odcinku zobaczymy na kilku konkretnych przykładach, jak skomplikowana bywa ewolucja, kiedy przyglądamy jej się z bliska i zamiast wyraźnie zarysowanego rozgałęzienia drzewa rodowego widzimy raczej plątaninę powiązań i komplikacje genealogiczne.

Przypisy

  1. Patrz Tomkins 2012 (tłumaczenie własne). ↩︎
  2. Oczywiście w opisanym tu niekompletnym sortowaniu linii rodowych brały też udział wymarłe gatunki spokrewnione z gorylami, szympansami i ludźmi, nie znamy jednak ich genomów. Wyjątkiem są najbliżsi krewni człowieka współczesnego, czyli neandertalczycy i denisowianie, których DNA wyodrębniono i zbadano. Rzecz jasna, ILS dotyczy także stosunków pokrewieństwa tych gatunków z Homo sapiens. Wiele polimorfizmów współczesnej populacji ludzkiej występowało także u neandertalczyków i denisowian. Oznacza to, że każdy z nas ma dużą liczbę alleli wspólnych z neandertalczykami lub denisowianami, ale nieobecnych u wielu współczesnych ludzi. Chodzi tu o allele odziedziczone po wspólnych przodkach, a nie przeniesione między gatunkami wskutek hybrydyzacji (co, jak wiadomo, też się zdarzało). ↩︎

Opisy ilustracji

Ilustracja w nagłówku − patrz pierwszy wpis z tego cyklu.
Ryc. 1. Samiec goryla nizinnego. Foto: Rennett Stowe 2010. Lokalizacja: Republika Środkowoafrykańska. Źródło: Wikispecies (licencja CC BY 2.0).
Ryc. 2. Drzewo rodowe goryli, szympansów i ludzi oraz genealogia dwóch alleli, „pomarańczowego” i „żółtego”. Pomarańczowy był odziedziczony po dalekich przodkach, żółty był innowacją: powstał wskutek mutacji (zdarzenie oznaczone kółkiem), dając początek neutralnemu polimorfizmowi. Bladobłękitna elipsa oznacza okres utrzymywania się polimorfizmu aż do jego niezależnego rozstrzygnięcia w poszczególnych liniach rodowych. Allel żółty przy pominięciu innych danych sugerowałby bliższe pokrewieństwo człowieka z gorylami (współna innowacja tych dwóch linii, niewystępująca u szympansów). Ilustracja własna (CC BY-SA 4.0). Sylwetki gatunków: PhyloPic (domena publiczna).

Lektura dodatkowa

Śluzice, czyli zwodnicza prostota

Kręgowce bez kręgosłupa

Dzięki błyskotliwym badaniom genomu śluzic, których wyniki opublikowano w Nature kilka miesięcy temu (Marlétaz et al. 2024, patrz link pod wpisem), dowiedzieliśmy się czegoś ciekawego o własnym pochodzeniu. Zaraz powiem czego, ale najpierw kilka słów o śluzicach (Myxini) – morskich zwierzętach o węgorzowatym kształcie. Jest to chyba najmniej znana szerokiej publiczności gałąź kręgowców.

Jak każde dziecko wie, kręgowce to zwierzęta, które posiadają kręgosłup. Ale nie każde dziecko wie, że jest pewien wyjątek: śluzice, choć mają nieskomplikowaną czaszkę zbudowaną z chrząstki, kręgosłupa nie posiadają. Owszem, występuje u nich w tylnej części ciała, poniżej struny grzbietowej, szereg segmentów chrzęstnych zinterpretowanych w 2011 r. jako szczątkowe odpowiedniki kręgów, ale kręgosłupem toto jednak nie jest. Trudno się zatem dziwić długotrwałym sporom, czy śluzice w ogóle są prawdziwymi kręgowcami. Nie mają parzystych płetw ani niczego w rodzaju kończyn, zamiast oczu występują u nich tylko plamki światłoczułe pozbawione soczewki czy umięśnienia. Brak im szczęk, mają natomiast lejek przyssawkowy, a w nim chrzęstny język z dwiema parami twardych, rogowych zębów, które mogą chwytać i wciągać pokarm. Mają też jedno nozdrze, a wokół niego i otworu gębowego charakterystyczny wianuszek 6−8 czułków. Żyją w morzach, często na dużej głębokości, żywiąc się wieloszczetami i wszelkiego rodzaju morską padliną. Żerując, wwiercają się głęboko w ciało martwej ryby lub walenia.

Cechą, od której pochodzi ich nazwa, jest duża liczba gruczołów produkujących włóknisty śluz. Wydzielony do wody morskiej, śluz ten puchnie gwałtownie, zwiększając swoją objętość kilka tysięcy razy w czasie krótszym niż sekunda. Śluzica wrzucona do wiadra z wodą w okamgnieniu zamienia jego zawartość w galaretę. Ryba próbująca połknąć śluzicę musi ją szybko wypuścić, aby uniknąć uduszenia wskutek zatkania skrzeli. Schwytana śluzica potrafi błyskawicznie zawiązać się w węzeł prosty i przesunąć go wzdłuż ciała, ścierając ze skóry śluz i wyślizgując się z uchwytu napastnika. Kiedy jest się istotą tak niesamowicie śliską, zawiązanie się w supełek jest najskuteczniejszym sposobem uzyskania chwilowego punktu oparcia.

Jak rozgałęziało się drzewo rodowe kręgowców

Do niedawna część biologów skłaniała się ku hipotezie, że śluzice są najdawniej wyodrębnioną grupą kręgowców i że prostota ich anatomii świadczy o zachowaniu cech pierwotnych. Według tej koncepcji wspólny przodek kręgowców mógł przypominać śluzice. Inni z kolei uważali śluzice za blisko spokrewnione z drugą żyjącą grupą kręgowców bezszczękowych – minogami (Hyperoartia). Ale minogi, choć przypominają śluzice brakiem szczęk i sposobem odżywiania się, mają jednak prawdziwe kręgosłupy z prawdziwymi kręgami (w postaci regularnie uszeregowanych obrączek chrzęstnych i prawdziwe oczy z prawdziwymi soczewkami.

Kiedy zaczęto sekwencjonować i analizować genomy minogów i śluzic, wstępne wyniki wsparły hipotezę, że te dwie grupy są bliżej spokrewnione z sobą nawzajem niż z innymi żyjącymi kręgowcami. Jeśli tak jest, to tworzą wspólnie klad krągłoustych (Cyclostomata), siostrzany względem żuchwowców (Gnathostomata). We współczesnej faunie znamy 39 gatunków minogów i 76 gatunków śluzic. Wszystkie pozostałe kręgowce (prawie 70 tys. opisanych gatunków) to żuchwowce. Niektóre z wymarłych kręgowców bezszczękowych (np. konodonty czy anaspidy) były być może bliżej spokrewnione z krągłoustymi niż z żuchwowcami, ale ustalenie wzajemnych pokrewieństw tych licznych i bardzo różnorodnych grup, których rozkwit przypadał na wczesny paleozoik, jest trudne. W każdym razie trzeba było rozważyć możliwość, że prostota anatomii krągłoustych − zwłaszcza śluzic − nie jest pierwotna, ale wynika z wyspecjalizowanego stylu życia.

Ryc. 1.

Żuchwowce dzielą się z kolei na dwie wielkie gałęzie ewolucyjne: chrzęstnoszkieletowe (Chondrichthyes), czyli rekiny i ich kuzyni, i kostnoszkieletowe (Osteichthyes). Współczesne kostnoszkieletowe także dzielimy na dwie grupy: promieniopłetwe (Actinopterygii), obejmujące większość gatunków tradycyjnie nazywanych rybami, i mięśniopłetwe (Sarcopterygii). Do tej ostatniej grupy należą trzonopłetwe (Actinistia) oraz dwudyszne (Dipnoi) i ich najbliżsi krewni, czworonogi (Tetrapoda), czyli kręgowce, które wyszedłszy na ląd, w większości na nim pozostały. Proszę zapamiętać, że człowiek jest przedstawicielem mięśniopłetwych.

Jak powielały się genomy

Ponad pół wieku temu japońsko-amerykański genetyk i biolog ewolucyjny Susumu Ohno wysunął hipotezę, że we wczesnej historii kręgowców nastąpiły przynajmniej dwie rundy podwojenia całego genomu, czyli w porównaniu ze swoimi przodkami i bliskimi krewnymi (osłonicami, a w dalszej kolejności bezczaszkowcami) kręgowce mają poczwórny genom. Nie widać tego na pierwszy rzut oka, bo po każdej takiej rundzie następowała „rediploidyzacja”, czyli porządkowanie na nowo układu chromosomów i eliminacja wielu zbędnych genów (tylko niektóre duplikaty zostały zachowane). Dlatego nie mamy cztery razy więcej genów niż typowe bezkręgowce (nie wspominając o nietypowych).

Zwielokrotnianie genomu zdarza się sporadycznie u kręgowców, ale nie jest tak rozpowszechnione jak np. u roślin. Hipoteza dwóch rund duplikacji (w skrócie − hipoteza 2R) pozostawała kontrowersyjna aż do XXI w. Nowsze analizy, oparte na dostępnych obecnie danych, potwierdziły ją w przypadku żuchwowców. Dane wskazywały ponadto, że genom minogów stał się nie dość, że poczwórny, ale nawet poszóstny. Nie było jednak dość danych na temat śluzic, więc nie było jasne, w jakich momentach historii kręgowców zaszły podwojenia i potrojenia całego genomu, i których grup dotyczyły.

Obecnie już wiemy. Międzynarodowa grupa badaczy zsekwencjonowała genom komórek linii płciowej śluzicy Eptatreus atami (żyjącej w Oceanie Spokojnym wokół Japonii) i odtworzyła skład poszczególnych chromosomów. Porównano następnie genom śluzicy z genomem minoga morskiego (Petromyzon marinus), kilku gatunków żuchwowców (w tym człowieka) i strunowca spoza kladu kręgowców (lancetnika). Udało się zrekonstruować dużą liczbę drzew rodowych poszczególnych genów różnego typu oraz genealogię całych chromosomów. Nie było to łatwe, bo odtwarzano zdarzenia sprzed ponad pół miliarda lat, których ślady w dużej mierze zatarła lub rozproszyła późniejsza ewolucja. Ubocznym skutkiem badania było niezależne potwierdzenie hipotezy o bliskim pokrewieństwie śluzic z minogami.

Rekonstrukcja

Wnioski z badania są następujące. Przodkowie kręgowców i ich najbliższych krewnych, czyli osłonic, rozdzielili się jeszcze w ediakarze. We wczesnym kambrze (ok. 530 mln lat temu) w linii wiodącej do kręgowców zaszła „autotetraploidyzacja”, czyli podwojenie genomu zapewne wskutek połączenia niezredukowanych gamet (z podwójnym kompletem chromosomów) jednego gatunku. Tetraploidalny genom został po tym wydarzeniu uporządkowany i odchudzony, Wkrótce potem w zapisie kopalnym pojawiły się najstarsze znane kręgowce, wciąż „bazalne”, czyli nienależące do współcześnie istniejących kladów.

Podział na żuchwowce i krągłouste mógł nastąpić ok. 520 mln lat temu. W obu liniach rodowych zaszły niezależnie kolejne zwielokrotnienia genomów. U wspólnego przodka żuchwowców (ok. 505 mln lat temu) była to „allotetraploidyzacja”, czyli podwojenie genomu wskutek hybrydyzacji (skrzyżowania się dwóch różnych gatunków). U przodka krągłoustych (500 mln lat temu) przydarzyła się z kolei heksaploidyzacja, chyli potrojenie całego genomu diploidalnego. Dopiero później, ok. 460−450 mln lat temu, wyodrębniły się linie rodowe chrzęstnoszkieletowych i kostnoszkieletowych oraz minogów i śluzic. Te ostatnie, ewoluując w kierunku uproszczenia anatomii, straciły wiele pierwotnie posiadanych genów (jak choćby geny krystalin, czyli białek tworzących soczewkę oka). Redukcja całych rodzin genów u śluzic była radykalniejsza niż u jakichkolwiek innych kręgowców. Z drugiej strony – śluzice rozwinęły własne ciekawe innowacje, w tym zdolność do produkcji magicznego śluzu z glikoprotein i białek spokrewnionych z keratynami.

Śluzice bardzo różnią się od minogów kariotypem, czyli układem chromosomów. Minogi mają ich kilkakrotnie więcej. Trzeba w związku z tym zadać sobie pytanie, czy to u minogów zaszły podziały chromosomów odziedziczonych po przodku krągłoustych, czy przeciwnie – u śluzic odziedziczone chromosomy uległy połączeniu. Można to rozstrzygnąć, badając współwystępowanie grup genów na chromosomach (tzw. wzorce syntenii, o których pisałem tutaj). Okazuje się, że to minogi prezentują stan bliski pierwotnemu, a u śluzic zaszły połączenia (fuzje) wielu chromosomów.

Ryc. 2.

Śluzice były pierwszymi kręgowcami, u których odkryto znaczną różnicę między genomem komórek linii płciowej (produkujących gamety) a genomem komórek somatycznych (tworzących resztę tkanek ciała). W tych drugich w rozwoju zarodkowym zachodzi genetycznie zaprogramowana eliminacja dużej części DNA. W przypadku śluzic jest to ponad jedna trzecia genomu. Całkowicie usuwane jest siedem chromosomów zawierających DNA bogate w sekwencje powtarzalne. Dziś wiadomo, że podobny (choć różny w szczegółach) proces zachodzi u minogów, a także – o dziwo – u ptaków śpiewających.

Podsumowanie

Wiemy już zatem wiele o śluzicach, a przy okazji dowiadujemy się po raz kolejny, że pozory mylą. Śluzice nie są prymitywnymi kręgowcami o cechach wspólnego przodka. Musiały przejść długą i skomplikowaną ewolucję, żeby aż tak się uprościć.

Teoria Susumu Ohno głosi, że duplikacja całego genomu stwarza znakomitą okazję do nadania starym genom nowych funkcji. Jeśli genom, który początkowo zawierał 20 tys. genów kodujących białka nagle ma ich 40 tys., otwiera to ewolucji ciekawe możliwości. Nadmiarowe kopie genów mogą ulec pseudogenizacji i zanikowi (dobór naturalny niezbyt dba o ich zachowanie, bo druga funkcjonalna kopia wciąż działa jak należy), ale mogą też wskutek mutacji dać początek nowym genom kodującym nieco zmodyfikowane białka. Takie zachowane białka dziś różne, ale mające wspólne źródło w całościowej duplikacji genomu, zwane są na cześć Ohno ohnologami. Jeśli okażą się użyteczne w nowej funkcji, wzbogacają proteom swojego posiadacza (czyli cały repertuar białek służących jako budulec, enzymy, hormony, molekuły transportowe itd.). Po pewnym czasie liczba genów wraca do normy, ale nowy genom jest pełen nowych rozwiązań. Zapewne gdyby nie dwie kolejne rundy podwojenia genów homeotycznych (typu Hox) sterujących budową planu ciała zwierząt, nie pojawiłyby się kręgowce o parzystych płetwach, a następnie czworonogi.

Wydawać by się mogło, że „bezżuchwowce” (w tym krągłouste) nie wykorzystały szansy, jaką dało im zwielokrotnienie (podwojenie, a potem potrojenie genomu). Trzeba pamiętać, że minogi i śluzice są ostatnimi żyjącymi przedstawicielami grupy, której wcześni reprezentanci przez kilkadziesiąt milionów lat także uprawiali najróżniejsze eksperymenty ewolucyjne, tworząc wielką rozmaitość form. Ucieczka w skrajną specjalizację i uproszczenie morfologii była być może sposobem na uniknięcie konkurencji z – jak się okazało − bardziej skutecznymi żuchwowcami. W każdym razie zbieżność w czasie „eksplozji kambryjskiej” (patrz wpis na jej temat) i kolejnych rund zwielokrotnienia genomów kręgowców jest zastanawiająca. Kręgowce bowiem były jedną z grup, której kariera ewolucyjna, rozpoczęta w kambrze, rozwinęła się na wielką skalę i trwa do dzisiaj.

Literatura

Opisy ilustracji (Martelaz et al. 2024, licencja CC BY-SA 4.0)

Ryc. 1. Śluzica Eptatreus atami i drzewo rodowe kręgowców, strunowców i ich dalszych krewnych.
Ryc. 2. Porównanie chromosomów minoga i śluzicy, ukazujące zachowane wzorce syntenii (współwystępowania genów w określonej kolejności). Kolorowe linie łączą geny ortologiczne (pokrewne i odziedziczone po wspólnym przodku).

Wideo

Śluzica zawiązująca się w supeł (źródło: Nautilus Live, Ocean Exploration Trust).
https://nautiluslive.org/video/2016/06/09/hagfish-ties-itself-knot

Labirynt ewolucji. Część 1: Gatunek jako pojęcie nieostre

Inne części tego cyklu:
2. Allele na łasce dryfu
3. Czy goryl obalił Darwina?
4. Gatunek patchworkowy

Jak ścisła powinna być nauka?

Naukę od innych sposobów poznawania świata odróżnia między innymi precyzyjny język i rygorystyczna metodologia, pozwalająca formułować i sprawdzać (za pomocą obserwacji i kontrolowanych eksperymentów) hipotezy logicznie wynikające z teorii. Co to znaczy „precyzyjny język”? W zasadzie chodzi o terminologię na tyle jasno zdefiniowaną, żeby dyskutując, ludzie nauki mogli się spierać o modele teoretyczne i o interpretację faktów, ale nie o słowa, którymi opisują świat. Jednak nawet matematyka (czyli sztuka operowania abstrakcjami) nie definiuje wszystkiego do końca, pozostawiając miejsce na pojęcia pierwotne, rozumiane intuicyjnie. Nie ma na przykład formalnej definicji pojęcia „zbioru” ani „liczby” (w sensie ogólnym, w odróżnieniu od jakiejś konkretnej klasy liczb). Nie przeszkadza to na ogół w uprawianiu matematyki, czyli w budowaniu modeli formalnych i dowodzeniu twierdzeń. Nie da się definiować pojęć jakiejkolwiek dyscypliny naukowej „do wyczerpania”, nie popadając w nieskończony regres lub błędne koło logiczne. Ale też nie ma potrzeby zbytnio się tym przejmować, bo jak wiadomo od czasów Ludwiga Wittgensteina, znaczenie słów tkwi w ich funkcji komunikacyjnej (czyli w tym, w jaki sposób ich używamy, porozumiewając się), a nie w słownikowych definicjach. Nawiasem mówiąc, językoznawcy nie mają ścisłej, uniwersalnej definicji pojęcia „słowa”, a mimo to nie strzelają sobie w łeb z tego powodu. W pewnym sensie nieostrość pojęć, jakich używamy, jest zaletą języka, nadaje mu bowiem giętkość semantyczną umożliwiającą przekazywanie znaczeń innych niż dosłowne.

Po co wymyślono gatunki i taksonomię?

Jednym z fundamentalnych pojęć biologii jest gatunek. Kiedy biologia zaczynała się rozwijać jako nauka, trzeba było jakoś usystematyzować pole badań, żeby się połapać w różnorodności form świata żywego. W XVIII w. ojcowie klasyfikacji biologicznej − z Karolem Linneuszem na czele − podjęli próbę podzielenia wszystkich znanych organizmów na podstawowe jednostki taksonomiczne. Każda z nich – nazwana gatunkiem1 − zawierała zwierzęta lub rośliny odznaczające się wspólnym zestawem cech odróżniającym je od innych takich jednostek. Gatunki posiadające nietrywialne cechy wspólne można było łączyć w hierarchicznie uporządkowane jednostki wyższej rangi: rodzaje, rzędy, klasy/gromady i królestwa. W ten sposób rozwinięto metodę, której pionierem był Arystoteles w IV w. p.n.e. Linneusz skodyfikował używaną do dziś konwencję „łacińskiej” nomenklatury binomialnej (dwuczłonowej).2 Pierwszym członem jest nazwa rodzajowa pisana dużą literą (np. Mus ‘mysz’), a drugim – jednowyrazowy epitet gatunkowy pisany małą literą (np. musculus), odróżniający gatunek Mus musculus (mysz domowa) od innych gatunków łączonych w rodzaj Mus (mysz).3 Nazw takich nie nadaje się pochopnie. Ich użycie regulują szczegółowo międzynarodowe kodeksy nomenklatury, a żeby nazwa została uznana, opis gatunku spełniający odpowiednie kryteria musi zostać formalnie opublikowany. W słynnym dziesiątym wydaniu Systema Naturae (1758) Linneusz wyróżnił i nazwał ok. 10 tys. gatunków, w tym ok. 6 tys. roślin i nieco ponad 4 tys. zwierząt.

Odpowiedź na pytanie, dlatego istnieją gatunki, wydawała się w XVIII w. prosta: Bóg stworzył każdy z nich z osobna. A dlaczego gatunki łączy tyle podobieństw, że można je na ich podstawie grupować w rodzaje, rzędy itd.? No cóż, widocznie Bóg lubi działać planowo, po inżyniersku, więc najpierw obmyślił sobie kilka ogólnych schematów budowy, a potem dla każdego z nich wymyślał różne możliwości realizacji, modyfikując podstawowy plan i dodając nieco specyficznych szczegółów. Na przykład człowieka (Homo) i pozostałe naczelne (Primates), do których Linneusz zaliczył też nietoperze, łączy kilka wskazanych przez Linneusza głębokich podobieństw (pewne cechy uzębienia, para piersi u samic, przednie kończyny mające formę rąk), a do tego dochodzą oczywiście „domyślne” cechy wszystkich ssaków, ale gatunek Homo sapiens odróżnia się od podobnych istot między innymi tym, że jako jedyny posiadł zdolność do mówienia.4

Sto jeden lat później (1859) ukazało się dzieło Karola Darwina O powstawaniu gatunków drogą doboru naturalnego. Darwin odrzucił koncepcję gatunków niezmiennych i istniejących od początku świata jako odrębne. Zamiast niej wprowadził koncepcję gatunków jako populacji cechujących się wewnętrzną zmiennością, ewoluujących pod działaniem nacisków selekcyjnych, a od czasu do czasu rozdzielających się na linie rodowe, z których każda daje początek innemu gatunkowi potomnemu (proces ten nazywamy specjacją).5 Stosując konsekwentnie model drzewa rodowego gatunków, obrazujący skutki kolejnych podziałów, można się pokusić o hipotezę, że w ogóle wszystkie istoty żywe pochodzą od jednego pierwotnego gatunku, czyli że istnieje tylko jedno uniwersalne „drzewo życia”. Taką wizję naszkicował sam Darwin, a biologia współczesna znalazła liczne argumenty na rzecz jej uznania.

Model ten elegancko wyjaśnia, skąd się bierze zarysowana przez Linneusza hierarchia grup gatunków pozagnieżdżanych w grupach wyższej rangi: odpowiadają one po prostu „poddrzewom” obejmującym pewien gatunek założycielski i wszystkie gatunki, które od niego pochodzą. Grupę spełniającą takie wymagania nazywamy dziś kladem. Każdy klad jest częścią większego kladu i sam zawiera mniejsze klady, chyba że składa się z jednego gatunku, który albo jeszcze nie zdążył się rozgałęzić, albo wymarł bezpotomnie. Współczesna taksonomia kladystyczna wymaga, żeby jednostki ogólniejsze niż gatunek były definiowane na podstawie wspólnego pochodzenia, a nie podobieństwa arbitralnie wybranych cech – to znaczy powinny być kladami. Czy nadamy im rangę rodzajów, rodzin, rzędów lub jakąkolwiek inną, nie ma większego znaczenia (poza wygodą badaczy). Jeżeli rekonstruujemy drzewo rodowe wszystkich organizmów żyjących w danym czasie, to końcówki wszystkich linii rodowych odpowiadają poszczególnym gatunkom współistniejącym na Ziemi.

Ryc. 1.

Ciągłość i podziały

Ale nadal nie wiemy dokładnie, czym jest  gatunek − poza tym, że jest to byt historyczny, zmienny w czasie i zdolny do rozdzielania się na gatunki potomne. Na czym polega to „rozdzielanie się”? Teoria ewolucji przewiduje, że zmiany są na ogół stopniowe, a zatem między sytuacją, w której istnieje jeden gatunek rodzicielski, a taką, w której mamy do czynienia z dwoma gatunkami potomnymi, powinny istnieć gładkie przejścia, gdy specjacja już trwa, ale nie jest jeszcze kompletna. Czy obserwujemy wówczas jeden gatunek, a w jego obrębie dwie różnicujące się odmiany, czy już dwa gatunki, ale jeszcze niezbyt wyraźnie rozdzielone? Decyzja może być niełatwa. Zauważmy, że sama teoria przewiduje tego rodzaju dylematy taksonomiczne. Chcielibyśmy uporządkować spektrum różnorodności biologicznej metodą upychania na siłę do przegródek. Okazuje się, że nie można tego załatwić jednym uniwersalnym kryterium. Zamiast tego stosuje się różne „koncepcje gatunku” w zależności od tego, o jakich organizmach mówimy.

Zacznijmy od tego, że każdy gatunek (o ile nie znajduje się w ostatnim stadium wymierania) odznacza się wewnętrzną różnorodnością i zmiennością. Jego populacja zawiera mnóstwo osobników, których DNA jest niemal identyczne, ale ponieważ typowe genomy składają się z milionów lub miliardów par zasad, słowo niemal może oznaczać całkiem znaczną liczbę różnic indywidualnych. W przypadku człowieka (6−6,1 mld par zasad w diploidalnym genomie) różnice między przypadkowo wybranymi ludźmi – nawet tej samej płci, czyli o takim samym układzie chromosomów − mogą sięgać 0,3% tej liczby (ok. 20 mln par zasad). W większości są to różnice punktowe lub obejmujące krótkie sekwencje DNA, ale jest wśród nich także średnio ponad 2 tys. różnic „strukturalnych” (dłuższe luki lub wstawki, zmienna liczba kopii powtarzalnych sekwencji DNA lub nawet całych genów). Większość z tych różnic nie ma znaczenia dla naszego rozwoju, fizjologii, zdrowia ani wyglądu, ale pozostałe odpowiadają za całą naszą zmienność wewnątrzgatunkową. A warto dodać, że H. sapiens należy do gatunków stosunkowo jednolitych genetycznie.

Koncepcja gatunku biologicznego

Skoro nie jesteśmy wszyscy tacy sami, skąd wiadomo że tworzymy jeden gatunek? Ma tu zastosowanie jedna ze wspomnianych „koncepcji”: koncepcja gatunku biologicznego, sformułowana przez Ernsta Mayra w roku 1942:

Gatunki to grupy faktycznie lub potencjalnie krzyżujących się naturalnych populacji, które są reprodukcyjnie odizolowane od innych takich grup.

Wynika stąd, że aby dwie populacje można było uznać za należące do osobnych gatunków, powinna między nimi istnieć bariera reprodukcyjna: przedstawiciele różnych populacji nie mogą dawać potomstwa zdolnego do przeżycia i dalszego rozrodu. W związku z tym przestaje zachodzić przepływ genów między populacjami, a wszelkie innowacje genetyczne (mutacje) pojawiające się w jednej z nich pozostają w jej obrębie. Z czasem różnice genetyczne pogłębiają się wskutek niezależnego gromadzenia się różnic w każdej populacji.

Tradycyjnie definiowano gatunki za pomocą diagnostycznego zestawu cech morfologicznych. Dopiero od niedawna stało się możliwe porównywanie w pełni zsekwencjonowanych genomów. Okazuje się często, że gatunki różniące się morfologicznie są w istocie bliskimi kuzynami i odwrotnie – populacje od dawna izolowane rozrodczo i różniące się genetycznie mogą pozostawać tak podobne morfologicznie, że były dotąd traktowane jako jeden gatunek i znane pod tą samą nazwą. Odkryto w ten sposób niezliczone kompleksy gatunków kryptycznych, trudnych do rozróżnienia na podstawie morfologii, ale reprezentujących izolowane linie ewolucyjne w ramach jednego kladu.6

Homo sapiens stanowi jeden gatunek w sensie mayrowskim, bo w jego obrębie krzyżowanie się zachodzi bez przeszkód, nie ma natomiast przepływu genów między człowiekiem a innymi gatunkami, nawet tymi, które są do nas podobne morfologicznie i genetycznie. Różnice między ludźmi a szympansami, nagromadzone w ciągu ok. 6 mln lat odrębnej ewolucji i dotyczące zarówno sekwencji DNA, jak i liczby chromosomów, powodują niedopasowanie genetyczne, które wyklucza prawidłowy przebieg zapłodnienia, a następnie normalny rozwój zarodka.

Zanim jedna zawołamy: „Hurra! Już wiem, czym jest gatunek!” zwróćmy uwagę, że mowa o izolacji rozrodczej ma sens, gdy mówimy o organizmach rozmnażających się płciowo (dzięki czemu zawartość genomów jest cały czas tasowana, czyli podlega rekombinacji). Do gatunków, które rozmnażają się głównie lub wyłącznie bezpłciowo, jeszcze wrócimy, ale na razie przyjrzyjmy się jeszcze innej trudności. Populacje, które rozdzieliły się stosunkowo niedawno (co w biologii może oznaczać czas rzędu setek tysięcy lat) mogą nadal być zdolne do krzyżowania się i wydawania na świat płodnego potomstwa. Z czasem ta zdolność maleje i w praktyce zanika.

Przeciekająca bariera: problem mieszańców

Na przykład linie ewolucyjne lwa i tygrysa rozdzieliły się ok. 4,5 mln lat temu. Te dwa gatunki nadal są zdolne do płodzenia mieszańców (zwanych ligrami lub tigonami zależnie od tego, które z rodziców reprezentuje jeden lub drugi gatunek). Zdarza się to czasem u zwierząt trzymanych w niewoli. Mieszane potomstwo płci męskiej jest bezpłodne; samice mogą być płodne. Brak dowodów, żeby lwy i tygrysy kiedykolwiek krzyżowały się w naturze tam, gdzie stykają się ich zasięgi geograficzne. Z drugiej jednak strony analiza genomów wielkich kotów (rodzaj Panthera) wskazuje, że już po tym, jak klad złożony z tygrysa i irbisa (pantery śnieżnej) oddzielił się od pozostałych przedstawicieli rodzaju (czyli lwa, lamparta i jaguara), dochodziło do przepływu genów między przodkiem lwa i lamparta a przodkiem irbisa, czyli do krzyżowania się już rozdzielonych gatunków.7

Ryc. 2.

Bariera reprodukcyjna zwykle nie pojawia się nagle, ale wyrasta stopniowo, z początku nie wykluczając hybrydyzacji i wymiany genetycznej między rozmnażającymi się płciowo populacjami. Zmniejsza tylko z czasem ich prawdopodobieństwo. Może nie być całkiem szczelna nawet po milionach lat. Hybrydyzacja – nagminna w świecie roślin − jest częstym źródłem trudności przy definiowaniu i oznaczaniu gatunków w botanice, a także przy rekonstruowaniu filogenezy roślin. Jeśli chodzi o kręgowce, krzyżówki międzygatunkowe są szczególnie częste wśród ptaków. Zwykle dotyczą małej liczby gatunków bardzo blisko spokrewnionych, ale np. kaczka (nomen omen) krzyżówka (Anas platyrhynchos) może w stanie dzikim tworzyć mieszańce z około 40 innymi gatunkami kaczek, w tym wieloma nawet nie zaliczanymi do rodzaju Anas. Gdybyśmy chcieli dogmatycznie stosować kryterium Mayra, trzeba by było większość rodzajów i gatunków kaczek (których ostatni wspólny przodek żył ok. 20 mln lat temu) zaliczyć do jednego gatunku. Nie robimy tego jednak, bo w praktyce populacje kaczek zachowują w dostatecznym stopniu swoją odrębność jako pule genetyczne, a przepływ genów między nimi – choć sporadycznie zachodzi – tylko częściowo zaciemnia strukturę pokrewieństwa wynikającą z wielokrotnych specjacji w ciągu milionów lat.

Jak widać, granice między gatunkami, zwłaszcza blisko spokrewnionymi, mogą być nieostre, a jeżeli chcemy  uwzględnić przepływ genów wskutek hybrydyzacji, ich drzewo rodowe należałoby uzupełnić o cieńsze lub grubsze wtórne połączenia między rozdzielonymi gałęźmi. Zresztą same gałęzie − ze względu na zróżnicowanie wewnątrzgatunkowe − nie są ostro zarysowanymi liniami, lecz raczej grubszymi pociągnięciami pędzla o nieco rozmytych konturach. Specjacja nie jest na ogół wydarzeniem dobrze zlokalizowanym w czasie, lecz procesem rozciągniętym na tysiące pokoleń. Dopiero po odpowiednio długim okresie możemy stwierdzić stanowczo, że gatunki rozdzieliły się skutecznie i nieodwracalnie. Przepływ genów między linią ludzi (Homo) a linią szympansów (Pan) ustał kilka milionów lat temu, ale szympansy zwyczajne (P. troglodytes) i bonobo (P. paniscus), rozdzielone ok. 2 mln lat temu, nadal potencjalnie mogą krzyżować się w niewoli. Istnieją też dowody genetyczne świadczące o wymianie genów między ich dziko żyjącymi populacjami stosunkowo niedawno – nie więcej niż 200 tys. lat temu.

Gatunki bez seksu

Rozmnażanie płciowe nie dotyczy wszystkich organizmów. Przede wszystkim nie uprawiają go prokarionty − bakterie i archeowce, które  przez ponad miliard lat były jedynymi żywymi mieszkańcami Ziemi i które do tej pory stanowią większość organizmów we wszystkich ekosystemach. Nie oznacza to, że między prokariontami nie dochodzi do przepływu i rekombinacji DNA (do tej kwestii jeszcze wrócimy), ale w każdym razie nie da się wobec nich zastosować  kryterium Mayra. Gdybyśmy uparli się to zrobić, musielibyśmy każdą pojedynczą bakterię uznać osobny „mikrogatunek”. A jednak prokarionty też można podzielić na grupy, wewnątrz których poszczególne osobniki mają praktycznie identyczną budowę i metabolizm, wykazują te same przystosowania do określonego typu środowiska i w niewielkim stopniu różnią się genetycznie. Tym, co je spaja, jest nie krzyżowanie się w obrębie populacji, ale wspólne pochodzenie (monofiletyzm) i ustawiczne działanie doboru naturalnego, utrzymujące całą populację blisko optimum dostrojenia do zajmowanej przez nią niszy ekologicznej.

Współczesne bakteriologiczne definicje gatunku  skupiają się głównie na ustalaniu progów podobieństwa genetycznego pozwalającego uznać dane prokarionty za „takie same”. Choć gatunki prokariontów noszą dwuczłonowe nazwy podobnie jak gatunki owadów, paproci czy grzybów, i tak samo grupowane są w rodzaje, rodziny i taksony wyższej rangi, trzeba pamiętać, że wyodrębniane są na podstawie innych kryteriów niż gatunki eukariontów rozmnażających się płciowo: gatunkiem jest w zasadzie klad złożony z pęczka linii rodowych, którego wewnętrzne zróżnicowanie (zwłaszcza genetyczne) utrzymuje się poniżej pewnego progu ustalonego empirycznie jako wygodny.

Na podobnych zasadach można definiować gatunki wirusów, które, choć tylko „jedną nogą” należą do świata żywego, ewoluują w podobny sposób jak prokarionty i także poddają się klasyfikacji kladystycznej. Nomenklatura wirusów nie została dotąd usystematyzowana; można nawet powiedzieć, że jest skrajnie chaotyczna, ale od kilku lat Międzynarodowy Komitet Taksonomii Wirusów (po długotrwałych dyskusjach i konsultacjach) wprowadza − na razie na zasadzie dowolności − nomenklaturę binomialną. Na przykład wirus znany nam aż nazbyt dobrze jako SARS-CoV-2 otrzymał w 2023 r. (wraz ze swoim kuzynem SARS-CoV) rekomendowaną nazwę gatunkową Betacoronavirus pandemicum. Ponieważ wyróżnia się już ponad 14 tys. gatunków wirusów pogrupowanych w ponad 3,5 tys. rodzajów, ponad 300 rodzin itd. (a liczby te z pewnością będą rosły lawinowo), uporządkowanie ich taksonomii jest sprawą pilną.

Są także liczne eukarionty, które rozmnażają się wyłącznie wegetatywnie (klonalnie), partenogenetycznie (dzieworódczo, czyli z udziałem jedynie gamety żeńskiej), albo też niemal wyłącznie polegają na takich aseksualnych sposobach rozrodu, a seks uprawiają tak rzadko i tak skrycie, że dotychczas ani razu badaczom nie udało się ich przyłapać na rozmnażaniu płciowym. Przykłady takich strategii rozrodczych prezentowałem w innym wpisie. W takich przypadkach gatunki trzeba definiować w podobny sposób jak u prokariontów.

Gatunki wymarłe i chronogatunki

Jeszcze inną trudność sprawia klasyfikacja organizmów wymarłych, znanych tylko w stanie kopalnym. Tu zwykle nie można polegać na danych molekularnych, bo DNA degraduje się całkowicie najdalej po dwóch milionach lat. Białka takie jak kolagen mogą się zachować w skamieniałościach znacznie dłużej, ale tylko w wyjątkowych okolicznościach. Pomijając zatem skamieniałości świeżej daty (z epoki plejstocenu), identyfikacja gatunków wymarłych i określanie ich przynależności systematycznej dokonywane są na podstawie cech morfologicznych, a jak już wiemy, morfologia bywa zwodnicza. Nie ma na to jednak rady, bo nie jesteśmy w stanie stwierdzić, czy np. dwa ewidentnie blisko spokrewnione i podobne do siebie dinozaury sprzed 100 mln lat mogły czy nie mogły się krzyżować. Ponadto populacje wymarłe, które znamy wyrywkowo z przypadkowo zachowanych skamieniałości, nie żyły wszystkie w tym samym czasie. Pojedyncza linia ewolucyjna mogła się rozwijać przez miliony lat, nie ulegając w tym czasie podziałom na osobne gatunki, ale zmieniając się morfologicznie. Paleontolodzy traktują ją wtedy jako zmienny w czasie chronogatunek, czasem nadając odrębne nazwy gatunkowe jego historycznym stadiom, ale oczywiście nie używając przy tym kryterium Mayra.

Podsumowanie

A zatem zamiast uniwersalnej definicji mamy szereg nie całkiem równoważnych koncepcji gatunku, stosowanych w zależności od tego, jaką grupą organizmów się zajmujemy. Wszystkie mają na celu ustalenie podstawowych jednostek taksonomicznych i zarazem bytów, których dotyczy ewolucja („gatunków filogenetycznych”). Spełniają swoje zadanie zadowalająco i tylko o to w gruncie rzeczy chodzi. Idealnej precyzji nie da się osiągnąć, bo problemy taksonomiczne są nieuniknione i wynikają z samej natury procesów ewolucyjnych.

Co z tego wynika dla modelu „drzewa życia”?  Wiemy już, że nieostrość pojęcia gatunku i niepełna izolacja nowo wyodrębnionych gatunków zakłócają jego elegancką geometrię. Na tym jednak nie koniec. W kolejnych odcinkach przyjrzymy się innym zakłóceniom. Gatunki składają się z osobników, a osobniki są nosicielami genomów. Każdy fragment genomu powielany i przekazywany z pokolenia na pokolenie ma własną historię i drzewo rodowe, ale dla różnych fragmentów te genealogie mogą być różne. Nie muszą się także pokrywać z tym, co uznajemy za historię ewolucyjną gatunku. Życie, jak wiadomo, składa się z samych komplikacji.

Przypisy

  1. Po łacinie: species (słowo to oznaczało ‘wygląd, formę, kształt, postać’). Polskie słowo gatunek jest zapożyczeniem z niemieckiego Gattung ‘rodzaj’. ↩︎
  2. Nazwy gatunków i grup taksonomicznych mogą zawierać elementy łacińskie, greckie lub zaczerpnięte z innych języków, ale formalnie mają z reguły postać zlatynizowaną, z końcówkami rzeczowników i przymiotników łacińskich. ↩︎
  3. Nazwy rodzajów i gatunków obowiązkowo pisane są kursywą; nazwy taksonów wyższej rangi mogą być pisane kursywą lub pismem prostym w zależności od tradycji specyficznej dla danego działu biologii, preferencji redakcji czasopism naukowych i zaleceń (nie zawsze zgodnych) kodeksów nomenklatury biologicznej. Częstym błędem popełnianym przez laików jest niewłaściwe użycie wielkich i małych liter: homo sapiens lub Homo Sapiens zamiast Homo sapiens. ↩︎
  4. Jak łatwo się domyślić, umieszczenie człowieka w Systema Naturae w królestwie zwierząt w towarzystwie małp, lemurów i nietoperzy było trudne do zaakceptowania dla części myślicieli, zwłaszcza teologów. ↩︎
  5. Przed Darwinem ewolucyjną zmienność gatunków postulował Jean-Baptiste Lamarck, który jednak wyobrażał sobie przemiany gatunków jako równoległy rozwój osobnych linii rodowych od prostoty do złożoności, a nie jako wywodzenie ich od wspólnego przodka. ↩︎
  6. Pewną komplikacją definicji Mayra jest fakt, że relacja „A i B należą do tego samego gatunku, ponieważ mogą się krzyżować” nie jest przechodnia. Z faktu, że A krzyżuje się z B, a B  z C, niekoniecznie wynika, że A krzyżuje się z C. ↩︎
  7. Co z tego wynikło, opowiem w jednym z kolejnych odcinków tej serii. ↩︎

Opis ilustracji

Ilustracja w nagłówku. Chrobotki (Cladonia) to rodzaj grzybów porostowych obejmujący ponad 400 znanych gatunków o rozmaitych formach tzw. plechy wtórnej: od kieliszkowatych (jak w tym przypadku) lub szydlastych po krzaczkowato rozgałęzione. Tradycyjnie wyróżniano wśród nich gatunki morfologiczne (na podstawie budowy) i chemiczne (na podstawie produkowanych przez nie charakterystycznych metabolitów wtórnych). Badania genomów doprowadziły do rewolucji w ich systematyce, ujawniając wiele złudnych podobieństw (konwergencji), kompleksów gatunków kryptycznych i ekotypów różniących się wyglądem, ale należących do tego samego gatunku. Identyfikacja chrobotków na poziomie gatunku bywa trudna lub niemożliwa bez starannych badań. Na zdjęciu widać owocniki (apotecja) w formie nieregularnych koralików, produkujące zarodniki służące do rozmnażania płciowego; można tu zatem zdefiniować gatunek w sensie mayrowskim. Foto: Piotr Gąsiorowski (2024). Lokalizacja: Puszcza Zielonka, Wielkopolska (licencja CC BY-SA 4.0).
Ryc. 1. Jedna z wersji „drzewa życia” Ernsta Haeckla (ok. 1879), ukazująca filogenezę kręgowców. Ilustruje ona początki myślenia w kategoriach filogenetycznych, choć z dzisiejszego punktu widzenia ma więcej wartości artystycznej niż naukowej. Źródło: Wikipedia (domena publiczna).
Ryc. 2. Wilk rudy, żyjący pierwotnie na dużym obszarze wschodniej częśći USA, to ginący ssak z rodzaju Canis o pozycji systematycznej trudnej do ustalenia mimo badań genetycznych. Bywał uważany za współczesną krzyżówkę wilka szarego (C. lupus) i kojota (C. latrans), za podgatunek wilka szarego, za osobny gatunek (C. rufus) lub za odmianę wilka algonkińskiego (C. lycaon) z dużą domieszką DNA kojota. Najnowsze badania całych genomów ujawniają skomplikowane pochodzenie północnoamerykańskich wilków i kojotów. C. lycaon/rufus wydaje się potomkiem endemicznego plejstoceńskiego gatunku siostrzanego względem kojota, ale podobnego morfologicznie do wilka, przy czym jeszcze w plejstocenie zdarzała się wymiana genów wskutek hybrydyzacji tego gatunku z wilkiem szarym. Współczesne wilki i kojoty teoretycznie mogą wydawać płodne potomstwo, ale brak dowodów na ich krzyżowanie się w stanie dzikim. Krótko mówiąc, rodzaj Canis (także w Starym Świecie) ilustruje najrozmaitsze komplikacje pojawiające się w warunkach niekompletnej specjacji. Foto: Animal Spot. Źródło: Wikimedia (licencja CC BY-SA 4.0).

Lektura dodatkowa