Zapomniany kontynent. Część 3: Tropami ssaków przez Antarktydę

Inne wpisy z tej serii
Zapomniany kontynent. Część 1: Serce Gondwany
Zapomniany kontynent. Część 2: Dinozaury za kołem podbiegunowym
Zapomniany kontynent. Część 4: Polarnicy antarktyczni z torbami
Zapomniany kontynent. Część 5: Skrzydła nad Antarktydą
Zapomniany kontynent. Część 6: Dinozaury w smokingach

Wszyscy jesteśmy cynodontami

Związki ssaków z Antarktydą sięgają bardzo głębokiej przeszłości. Już z wczesnego triasu znane są ze stanowisk antarktycznych synapsydy (Synapsida), czyli przedstawiciele gałęzi ewolucyjnej, której współczesnymi przedstawicielami są ssaki. Dawniej określano je nazwą „gadów ssakokształtnych”, która wprowadzała laików w błąd, sugerowała bowiem, że ssaki pochodzą od gadów. Tymczasem gady (wraz z ptakami) należą do grupy Sauropsida, siostrzanej względem Synapsida. Te dwie wielkie gałęzie owodniowców – kręgowców, które dzięki wytworzeniu błon płodowych uniezależniły swój rozwój embrionalny od środowiska wodnego – rozdzieliły się ponad 300 mln lat temu. Wszystkie synapsydy są na mocy definicji bliżej spokrewnione ze ssakami niż z gadami.

W obrębie synapsydów wyewoluowały terapsydy, coraz bardziej przypominające ssaki. Pod koniec permu dominowały na jedynym istniejącym wówczas kontynencie – Pangei. Przeżyły straszne w skutkach dla całej biosfery wielkie wymieranie permsko-triasowe (P–Tr) 252 mln lat temu i utrzymały swoją pozycję na początku triasu; jednak po kilku milionach lat liderami wyścigu ewolucyjnego zostały dla odmiany Sauropsida, czyli gady. Wśród nich rosnącą rolę zaczęły odgrywać gady naczelne (Archosauromorpha) – późniejsze krokodyle, pterozaury i dinozaury. Jednak triasowe skamieniałości antarktyczne pochodzą jeszcze z czasów świetności terapsydów, nawet jeśli ich świetność zaczynała się chylić ku upadkowi.

Jednym z terapsydów był lystrozaur (Lystrosaurus), rodzaj znany ze wszystkich zakątków Pangei, zwierzę wielkości psa, kopiące nory. Rodzaj ten był tak pospolity, że na niektórych stanowiskach ponad 90% skamieniałych osobników to lystrozaury. Należały one do dicynodontów, roślinożernych czworonogów o szczególnym wyglądzie: ich pysk przekształcił się w rogowy dziób, a uzębienie zanikło z wyjątkiem dwóch wielkich kłów w górnej szczęce. Lystrosaurus przystosował się znakomicie do życia w warunkach pustynnych, dzięki czemu przeżył dramatyczne globalne ocieplenie, które spowodowało katastrofę P–Tr.

Ryc. 1.

W skałach Gór Transantarktycznych sprzed ok. 250 mln lat (formacja Fremouw) zachowały się szczątki trzech gatunków lystrozaurów (w bardzo dobrym stanie, nawet ze zmumifikowaną skórą) oraz wiele innych terapsydów reprezentujących kilka różnych linii rozwojowych. Był wśród nich między innymi drapieżny cynodont z rodzaju Cynognathus, bardzo już podobny do ssaków, w czym nie ma nic dziwnego, bo ssaki wyewoluowały wewnątrz kladu Cynodontia. Notabene oznacza to, że ludzie, podobnie jak wszystkie inne ssaki, też są cynodontami. Terapsydom antarktycznym towarzyszyły dość liczne płazy i gady, a wśród tych  drugich prymitywny gad naczelny półtorametrowej długości, Antarctanax – skromna zapowiedź „ery dinozaurów”. W przekroju kłów lystrozaurów z Antarktydy widoczne są roczne linie przyrostu, co może wskazywać na spowolniony metabolizm, a może nawet zapadanie w hibernację podczas miesięcy zimowych.

Dokąd prowadzą poszlaki

Szkoda, że antarktyczny zapis kopalny jest bardzo niekompletny i składa się z serii migawek rozdzielonych przez dziesiątki milionów lat. Wspomniałem w poprzednim odcinku, że z wczesnej jury znany jest tritylodont (bardzo bliski krewny ssaków), który żył współcześnie z dinozaurami takimi jak Cryolophosaurus. Dokładniej – znaleziono pojedynczy ząb tritylodonta. Poza tym na razie brak jakichkolwiek skamieniałości antarktycznych przedstawicieli ssaczej linii ewolucyjnej między wczesną jurą (190 mln lat temu) a początkiem eocenu (ok. 55 mln lat temu).

Niemniej tacy przedstawiciele musieli istnieć. Dowodzi tego zasięg występowania kilku grup ssaków. Jedną z nich są gondwanatery (Gondwanatheria) – boczna, bezpotomnie wymarła gałąź ssaczego rodu. Ich pozycja systematyczna nie jest do końca jasna. Przypisuje im się często pokrewieństwo z haramiidami – grupą ssaków, które w erze mezozoicznej odniosły spory sukces, przerzucając się z owadożerności na roślinożerność lub wszystkożerność. Opanowały dzięki temu różnorodne nisze ekologiczne podobne do tych, które w późniejszych czasach zajęły wieloguzkowce, a ostatecznie gryzonie. Skamieniałości gondwanaterów pochodzące z późnej kredy znaleziono w Ameryce Południowej (gdzie były szczególnie liczne i różnorodne), w Indiach i na Madagaskarze, a także w Afryce; nie znamy natomiast gondwanaterów z Australii.

Ryc. 2.

Haramiidy co prawda wyewoluowały w Laurazji, podczas gdy gondwanatery (jak podpowiada ich nazwa) zamieszkiwały wyłącznie kontynenty stanowiące resztki Gondwany. Haramiidy znane są jednak także z późnej jury Tanzanii i najwcześniejszej kredy Maroka. Oznacza to, że zdołały pokonać wąską barierę morską dzielącą Europę od Afryki, co udało się zresztą kilkakrotnie różnym grupom ssaków. Ponieważ Afryka w tym czasie stykała się jeszcze z Ameryką Południową, przodek gondwanaterów mógł skorzystać z tego połączenia. Inna możliwość to migracja owego przodka z Ameryki Północnej do Południowej przez łańcuch wysp rozciągnięty między tymi kontynentami. Tak czy siak droga lądowa między Ameryką Południową a Indo-Madagaskarem musiała prowadzić przez Antarktydę. Została przerwana ok. 140–130 mln lat temu, gdy Indie z Madagaskarem zaczęły wędrować na północ. Dlatego obecność gondwanaterów w Antarktydzie w okresie kredowym jest pewna, nawet jeśli dotąd nie opisano ich skamieniałości.

Inna grupa ssaków typowo gondwańskich to jurajskie i kredowe australosfenidy (Australosphenida), znane z Australii, Ameryki Południowej, Madagaskaru i Indii. Również w tym przypadku zasięg grupy musiał obejmować Antarktydę jako oś Gondwany łączącą wymienione części świata. Ale o australosfenidach mało kto słyszał, więc rzućmy okiem na grupę o wiele bardziej znaną. Według niektórych badaczy należy ona zresztą do australosfenidów, choć inni są odmiennego zdania. Mowa o stekowcach (Monotremata).

Czy stekowce pochodzą z Antarktydy?

Chyba każdy wie, że stekowce żyją w Australii – a raczej na terenie wcześniejszego kontynentu Sahul, obejmującego także Tasmanię i (co należy szczególnie podkreślić) Nową Gwineę. W istocie spośród pięciu żyjących współcześnie gatunków stekowców trzy (prakolczatki z rodzaju Zaglossus) żyją wyłącznie na Nowej Gwinei, jeden (kolczatka, Tachyglossus aculeatus) na Nowej Gwinei, w Australii, na Tasmanii i na kiku mniejszych wyspach), a jeden (dziobak, Ornithorhynchus anatinus) w Australii i na Tasmanii. Do niedawna stekowce kopalne znane były także tylko z tego obszaru. Najstarsze z nich to gatunki kredowe: wyjątkowo maleńki (40 g) Teinolophos trusleri (123 mln lat temu), Kryoryctes cadburyi (106 mln lat temu) oraz Steropodon galmani, Stirtodon elizabethae i Kollikodon ritchiei (wszystkie sprzed ok. 100 mln lat). Żyły one w Australii, która w owym czasie była połączona z Antarktydą i sama leżała blisko bieguna południowego. Stekowce były zatem z pochodzenia ssakami podbiegunowymi.

Niespodzianką było opisanie w roku 1992 Monotrematum americanum, stekowca z rodziny dziobakowatych, który żył w argentyńskiej Patagonii we wczesnym paleocenie, 61 mln lat temu. Czego szukał dziobak tak daleko od Australii? Nasuwały się dwa możliwe wyjaśnienia. Według pierwszego – zasięg stekowców w Gondwanie był już w mezozoiku na tyle szeroki, że sięgał po Patagonię, a zatem musiał obejmować także przynajmniej część Antarktydy. Według drugiego – krótko po wielkim wymieraniu jeden z gatunków australijskich stekowców skorzystał z pomostów lądowych i po długiej wędrówce, pokonawszy ok. 5000 km, dotarł do Ameryki Południowej.

Wobec braku innych skamieniałości stekowców poza Sahelem trudno było rozstrzygnąć, który scenariusz jest bardziej prawdopodobny. Jednak w mijającym roku (2023) opisano kolejnego stekowca, Patagorhynchus pascuali, także z argentyńskiej częśći Patagonii, ale z późnej kredy (ok. 70 mln lat temu). Dwa stekowce patagońskie nie były z sobą blisko spokrewnione: Patagorhynchus nie był przodkiem Monotrematum. Oznacza to, że stekowce albo co najmniej dwukrotnie migrowały z Australii do Patagonii, albo po prostu były „u siebie” w Antarktydzie i stamtąd rozprzestrzeniały się do Ameryki Południowej przez pomost lądowy. Tak czy siak musiały występować w Antarktydzie, a kto wie, czy nie była ona ich praojczyzną (być może wraz z Australią). Z dokładniejszą rekonstrukcją ich wędrówek trzeba poczekać na kolejne odkrycia. Miejmy nadzieję, że w końcu znalezione zostaną jakieś stekowce antarktyczne z kredy lub wczesnego paleogenu.

Nowi zdobywcy Antarktydy

Jeśli chodzi o samą Antarktydę i jej ssaki, luka paleontologiczna rozciąga się na paleocen. Natomiast z kolejnej epoki, czyli z eocenu, mamy liczne skamieniałości ssaków (a także innych zwierząt, w tym ptaków) z Wyspy Seymoura, sąsiadującej z Wyspą Jamesa Rossa, znaną nam już z poprzedniego wpisu z tej serii. Jest ich naprawdę wiele; pochodzą z okresu 55–34 mln lat temu i reprezentują wiele grup systematycznych, w tym gondwanatery i meridiolestydy (relikty miejscowej fauny kredowej), a obok nich ssaki łożyskowe (Eutheria), które albo pod sam koniec kredy, albo na początku paleocenu przedostały się z Ameryki Północnej do Południowej. W tym okresie formowały się między tymi kontynentami efemeryczne pomosty lądowe, które przez pewien czas umożliwiały migrację zwierząt na ograniczoną skalę (skorzystały z tej okazji także niektóre wielkie dinozaury).

Nie wszyscy imigranci z północy dotarli aż do Antarktydy; być może nie wszystkim odpowiadał klimat dalekiego południa, ale w każdym razie w rejonie Półwyspu Antarktycznego spotykamy reprezentantów południowoamerykańskich endemicznych rzędów ssaków kopytnych Astrapotheria i Litopterna. Co najmniej te drugie były bliskimi kuzynami laurazjatyckich nieparzystokopytnych, o czym świadczą badania kolagenu i mitochondrialnego DNA ich ostatnich, niedawno wymarłych przedstawicieli. Szczególnym przypadkiem są fragmentaryczne skamieniałości szczerbaków, których przodkowie zapewne na długo przed końcem kredy dotarli do Ameryki Południowej z Afryki. Inny szczególny przypadek to szczątki eoceńskich waleni – pierwszych ssaków, które odkryły Antarktydę, docierając do niej drogą morską (wiele milionów lat później powtórzyły ten wyczyn foki i uchatki). Było wśród tych wczesnych waleni kilka gatunków z wymarłej grupy bazylozaurydów, a także pierwotny fiszbinowiec Llanocetus, uzębiony i nieposiadający fiszbinów (na przekór swojej pozycji systematycznej). Wyróżniał się on rozmiarami ciała: osiągał długość do 8–12 m, czyli 2–3 razy więcej niż inne wczesne fiszbinowce.

Ryc. 3.

Gdybym miał się pokusić o zgadywanie, jakie inne łożyskowce powinny być obecne w eoceńskiej Antarktydzie, mimo że nie odkryto dotąd ich skamieniałości, wskazałbym na nietoperze. W tym czasie żyły one już i w Patagonii, i w Australii, więc kolonizacja Antarktydy jak najbardziej mieściła się w zakresie ich możliwości. Jednak delikatne szkielety nietoperzy rzadko zachowują się w stanie kopalnym.

Najbardziej różnorodną i najliczniej reprezentowaną w zapisie paleontologicznym grupę eoceńskich ssaków z Półwyspu Antarktycznego stanowiły torbacze (Metatheria). Skąd się wzięły, co robiły w tak niezwykłym miejscu i co z tego wynikło – o tym opowiem w kolejnym odcinku serii.

Uwagi terminologiczne

Używając słowa ssaki nie zawężam jego znaczenia do tzw. grupy koronnej (zwanej po łacinie Mammalia), czyli najmniejszego kladu zawierającego wszystkie ssaki żyjące współcześnie. Mam na myśli raczej Mammaliaformes (ssakokształtne), czyli większą grupę, do której należą wymarli bliscy krewni Mammalia, również posiadający futerko, stałocieplni i karmiący swoje młode mlekiem. Zresztą wszystkie te cechy pojawiły się jeszcze dawniej, u wczesnych członków jeszcze pojemniejszej grupy Mammaliamorpha, do której obok ssakokształtnych zaliczamy również ich grupę siostrzaną, czyli tritylodonty – między innymi te, które w późnym triasie zamieszkiwały Antarktydę.

Podobnie, pisząc o łożyskowcach i torbaczach, mam na myśli większe gałęzie ewolucyjne (Eutheria i Metatheria), a nie odpowiadające im bardziej zawężone grupy koronne (Placentalia i Marsupialia). Nie zawsze jest jasne, czy jakaś wymarła linia rodowa należy do grupy koronnej, czy powinna być umieszczona poza nią. Dotyczy to na przykład haramiidów i gondwanaterów. Pytanie, czy były one „ssakami w ścisłym sensie”, czy „ssakokształtnymi cynodontami spoza kladu Mammalia” jest raczej akademickie. Jeśli specjaliści nie są pewni, jak brzmi odpowiedź, to granicę między „ssakami” a „prawie-ssakami” trzeba traktować jako umowną i rozmytą.

Opisy ilustracji

Zdjęcie w nagłówku. Pingwiny cesarskie (Aptenodytes forsteri) na krze u wybrzeży Antarktydy. Foto: nanjinsamual. Źródło: iNaturalist (licencja CC-BY-NC).
Ryc. 1. Wczesnotriasowe dicynodonty z Antarktydy (w tym trzy gatunki lystrozaurów). Autor: Gabriel N. Ugueto via Twitter (fair use).
Ryc. 2. Adalatherium hui, rekonstrukcja wyglądu gondwanatera z Madagaskaru z końca kredy (tuż przed wielkim wymieraniem). Było to, jak na kredowego ssaka, duże zwierzę (52 cm długości i ok. 3,1 kg masy ciała). Gondwanatery znane są zwykle z fragmentów kostnych – zębów lub kości szczęk; w tym przypadku jednak odkryto niemal kompletny szkielet (Krause et al. 2020).  Autor: Andrey Atuchin. Źródło: Scimex (CC with attribution).
Ryc. 3. Llanocetus denticrenatus, antarktyczny waleń z późnego eocenu (ok. 38–34 mln lat temu) odkryty na Wyspie Seymoura. Choć należał do linii ewolucyjnej fiszbinowców, nie posiadał fiszbinów. Zamiast tego zęby zaopatrzone w wachlarzowato rozłożone guzki pomagały mu zatrzymywać i przegryzać zdobycz średniej wielkości (ok. 30 cm, np. ryby tworzące ławice) zasysaną przez szybki ruch żuchwy; mógł też polować na duże zwierzęta morskie, podobnie jak dzisiejsze zębowce, zob. Fordyce & Marx 2018. Autor: Carl Buell Źródło: The Conversation (licencja CC BY-SA).

Lektura dodatkowa

Właśnie ukazało się po polsku bardzo ciekawe wprowadzenie do wczesnej historii ssaczej gałęzi drzewa rodowego (poczynając od synapsydów z karbonu i permu):

Elsa Panciroli. 2023. Bestie, które żyły przed nami. Nowa historia pochodzenia i ewolucji ssaków [oryginał: Beasts before us. The untold story of mammal origin and evolution, Bloomsbury Publishing 2021]. Prószyński i S-ka. Przekład: Bartosz Sałbut.
https://www.proszynski.pl/product/bestie-ktore-zyly-przed-nami

Gorąco polecam tę pracę, bo jest to chyba jedyna na rynku polskim przystępna prezentacja nowoczesnej wizji ewolucji ssaków, napisana z pasją i znawstwem tematu. Czytelnika polskiego może ująć entuzjazm autorki wobec dokonań Zofii Kielan-Jaworowskiej, o których pisałem tutaj. Trzeba stwierdzić, że tłumaczenie polskie jest miejscami chropowate i nie zawsze sobie radzi z terminologią fachową, a korekta wydawnicza przepuściła sporą liczbę usterek językowych. Może to irytować wymagającego czytelnika, ale nie umniejsza walorów książki.

Maleńka bakteria i gigantyczne białko

Tytyna jak sprężyna

Oficjalnie największym znanym białkiem jest tytyna, pełniąca niesłychanie ważną rolę molekularnej „sprężynki” odpowiadającej za kurczliwość mięśni poprzecznie prążkowanych u kręgowców. Bez tytyny nie ruszylibyśmy ręką ani nogą i nie biłoby nasze serce. U innych zwierząt występują białka pokrewne i pełniące podobne funkcje, ale akurat u kręgowców tytyna rozciągnęła się wyjątkowo: jej molekuła ma ponad 1 μm (mikrometr) długości. Gen TTN, kodujący tytynę u człowieka, jest oczywiście odpowiednio olbrzymi. Składa się z rekordowej liczby 363 eksonów, czyli odcinków DNA kodującego, poprzedzielanych niekodującymi intronami. Po przepisaniu genu na RNA, czyli transkrypcji, introny zostają wycięte, a eksony sklejone w jedną całość. Proces ten nazywamy splicingiem; jego wynikiem jest nić informacyjnego RNA (mRNA) zawierająca pełny kod białka, które ma zostać zsyntetyzowane w procesie translacji.

Transkrypty niektórych genów mogą być składane w różny sposób, tworząc matryce do tworzenia różnych białek. Takie zjawisko nazywamy splicingiem alternatywnym. Może on polegać na pominięciu niektórych eksonów (to najczęstsza forma splicingu alternatywnego u zwierząt) albo na pozostawieniu któregoś z intronów. W ten sposób jeden gen może potencjalnie kodować wiele białek. Z właściwym splicingiem alternatywnym mamy do czynienia wtedy, kiedy wszystkie jego produkty są funkcjonalne. Trzeba go odróżnić od błędów splicingu, gdy wskutek niewłaściwego złożenia mRNA powstaje białko niefunkcjonalne lub wręcz upośledzające metabolizm komórki, przed czym oczywiście organizm stara się bronić.

Ryc. 1.

Tytyna składa się z dwustu kilkudziesięciu liniowo uszeregowanych domen, czyli niezależnie formowanych modułów funkcjonalnych. Niemal wszystkie z nich należą do dwóch typów – immunoglobuliny lub fibronektyny. Każdy z tych dwóch rodzajów występuje w liczbie ponad stu kopii. Tytyna wyewoluowała dzięki licznym duplikacjom (podwojeniom) pradawnego genu kodującego pierwotnie krótki ciąg domen. Większość domen nadal kodowana jest przez jeden ekson. Fakt ten sprzyja współistnieniu wielu wariantów tytyny powstających dzięki splicingowi alternatywnemu. Tworzone są one w sposób kontrolowany (czyli nie omyłkowo) i różnią się głównie długością – zależną od tego, które eksony i w jakiej liczbie są pomijane – i mechaniczną elastycznością, dlatego znajdują zastosowanie w różnych typach mięśni. Forma „kanoniczna” (podstawowa) ludzkiej tytyny zawiera 34 350 aminokwasów. Jej odpowiedniki u innych gatunków ssaków, na przykład u myszy, mogą być nawet nieco dłuższe. Gen TTN koduje jeszcze więcej, bo ponad 38 tys. aminokwasów, ale w każdym ze znanych wariantów białka część sekwencji kodujących zostaje pominięta.

Ryc. 2.

Tytyna jest zatem białkiem niezwykle długim, ale dość monotonnym – sekwencją naprzemiennie ułożonych, powtarzalnych modułów. Jej systematyczna nazwa chemiczna w języku angielskim ma prawie 190 tysięcy liter i potrzeba kilku godzin, żeby ją w całości odczytać na głos, nie jest to jednak lektura szczególnie fascynująca (a nazwa tytyna jest poręczniejsza). Ludzki gen TTN (eksony wraz z intronami) zajmuje odcinek o długości ponad 300 tysięcy par zasad na chromosomie 2. W każdym razie Księga Rekordów Guinnessa odnotowuje tytynę jako największe znane białko. Czy słusznie?

To zależy, jak interpretujemy słowo znane. Tytyna jest rekordzistką, jeśli chodzi o białka szczegółowo zbadane, figurujące w specjalistycznych bazach danych. Ale wiemy też, że z prawdopodobieństwem graniczącym z pewnością istnieją białka jeszcze większe.

Mikroorganizmy i supergeny

O dziwo, na ich trop wpadli badacze zajmujący się jednymi z najmniejszych bakterii. Już wcześniej zauważono, że w kilku grupach bakterii, a także u niektórych archeowców (o tym, czym są archeowce, pisałem tutaj i tutaj) występują geny kodujące białka praktycznie równie wielkie jak tytyna. Na przykład jeden z genów bakterii Chlorobium chlorochromatii (należącej do typu Chlorobiota, czyli zielonych bakterii siarkowych) koduje białko złożone z 36 806 aminokwasów. Wydaje się jednak, że wielkie geny występują szczególnie często u bakterii z grupy nazwanej Omnitrophota. Dokładniej mówiąc, jest to typ Ca. (Candidatus) Omnitrophota. Tak oznacza się proponowane jednostki taksonomiczne dobrze scharakteryzowane, ale obejmujące bakterie niezbadane szczegółowo, bo niedające się wyizolować i hodować w laboratorium. Określa się je często jako „ciemną materię” mikroświata. Wiemy, że jest jej mnóstwo, znamy wyrywkowo niektórych jej przedstawicieli, ale ogólnie jest to nadal terra incognita – teren przyszłych odkryć.

Ryc. 3.

O Omnitrophota wiadomo dość dużo z badań metagenomowych (czyli z analiz materiału genetycznego wyodrębnianego z różnych nisz ekologicznych), ale dopiero niedawno udało się podejrzeć niektóre z nich pod mikroskopem i utrzymać w warunkach laboratoryjnych. Z tego, co wiemy, jest to grupa różnorodna i bogata w gatunki, występująca praktycznie wszędzie w niezbyt zasolonych środowiskach beztlenowych: w wodach hydrotermalnych gejzerów i kraterów wulkanicznych, w glebie wokół korzeni roślin, w wodach gruntowych, w mulistych osadach, bagnach, ściekach, a nawet w jeziorach ukrytych pod lodami Antarktydy. Okazy, które udało się zaobserwować bezpośrednio, mają wielkość 200–300 nm (0,2–0,3 μm), czyli są niezwykle miniaturowe nawet jak na bakterie. Zarówno z tych obserwacji, jak i z analizy ich genów, wynika, że są to bakterie drapieżne lub pasożytnicze, atakujące inne bakterie i archeowce, a być może nawiązujące z nimi również stosunki symbiotyczne.

Bakteria z tej grupy, Ca. Velamenicoccus archaeovorus, kiedy występuje w towarzystwie archeowca Methanosaeta sp. (jednego z najbardziej rozpowszechnionych mikroorganizmów naszej planety), wydziela wyjątkowo duże białko, złożone z 39 678 aminokwasów i zawierające kilkaset domen. Prawdopodobnie wiąże się ono ze ścianą komórkową ofiary, trawi ją i otwiera bakterii dostęp do cytoplazmy. Gen tego białka stanowi ok. 6% całego genomu V. archaeovorus.

Ryc. 4.

Co kryje ciemna materia

Być może właśnie padł kolejny rekord. Badacze z Uniwersytetu Kalifornijskiego w Berkeley, przeglądając genomy Omnitrophota w poszukiwaniu olbrzymich genów, trafili na gen kodujący sekwencję 85 804 aminokwasów. Tak szokująco wielkie białko byłoby ponad dwa razy większe od dotychczasowych rekordzistów, w tym tytyny. Jaką funkcję może pełnić? Nie znaleziono samego białka ani jego fragmentów, tylko odpowiadające mu kodujące DNA. Co można z niego wywnioskować?

Dysponujemy obecnie narzędziem sztucznej inteligencji, rozwijanym i doskonalonym przez Google DeepMind – AlphaFold. Jest to program korzystający z samouczących się sieci neuronowych, przewidujący trójwymiarową strukturę białka na podstawie jego sekwencji aminokwasowej. Niestety AlphaFold, imponująco skuteczny w przypadku białek niewielkich albo średniej wielkości, radzi sobie tym gorzej, im dłuższą sekwencję musi zanalizować. Dla białek złożonych z kilkudziesięciu tysięcy aminokwasów nie dałby w ogóle sensownych wyników. Dlatego zastosowano pomysłową sztuczkę: podzielono gen na odcinki o długości około 1000 par zasad, częściowo nakładające się na siebie, zrekonstruowano odpowiadające im fragmenty białka za pomocą AlphaFold, po czym spróbowano złożyć je w spójną całość. Powstał obraz białka o wielu domenach, które mogłyby wiązać się ze ścianą komórkową, zawierającego także fragmenty bardziej zagadkowe, jak osobliwa struktura przypominającą rurkę, utworzona przez symetrycznie skręcone helisy białka.

Być może jest to kolejne olbrzymie białko używane przez nanobakterie jako broń myśliwska, nie wiemy jednak na pewno, czy produktem genu jest pojedyncza molekuła. Być może już w trakcie translacji syntetyzowana sekwencja jest cięta na kilka białek pełniących różne funkcje. Ani domniemane białko, ani produkująca je bakteria nie zostały na razie zaobserwowane bezpośrednio, odkrycie wymaga więc potwierdzenia innymi metodami. Wyniki zostały upublicznione w repozytorium bioRχiv, ale oczekują jeszcze na recenzje i publikację w ostatecznej formie. Trzeba więc zachować ostrożną rezerwę, ale jednocześnie podkreślić, że białka zbudowane z ponad 30 tysięcy aminokwasów to w świecie bakterii nic niezwykłego. Prawdziwych rekordzistów trzeba więc zapewne szukać właśnie tam.

Lektura uzupełniająca

Tytyna, największe ludzkie białko: https://pdb101.rcsb.org/motm/185.
Forma, funkcje i filogeneza tytyny: Linstedt & Nishikawa 2017.
Co wiemy o Ca. Omnitrophota: Seymour et al. 2023.
Wstępne doniesienie o genie-gigancie: Jacob West-Roberts et al. 2023.
Omówienie na łamach Nature: https://www.nature.com/articles/d41586-023-03937-z.

Opisy ilustracji

Ryc 1. Model (JSmol) fragmentu cząsteczki tytyny: sześć domen białkowych (spośród 244) połączonych ruchomymi „zawiasami″. Źródło: Protein Data Bank (domena publiczna).
Ryc 2. Tytyna (kolor żółty) tworząca z kilkoma innymi białkami sarkomery (jednostki funkcjonalne mięśnia poprzecznie prążkowanego), pokazane w fazie rozkurczu i skurczu. Źródło: David Goodsell 2015/Protein Data Bank (domena publiczna).
Ryc. 3. Gorące źródło Obsidian Pool w Parku Narodowym Yellowstone (Wyoming, USA), w którym po raz pierwszy odkryto DNA bakterii z proponowanego typu Omnitrophota (obok nadzwyczajnej różnorodności archeowców). Foto: Bob Lindstrom 1997. Źródło: Wikipedia (domena publiczna).
Ryc 4. Archeowiec Methanosaeta sp. (podłużne komórki tworzące włókniste kolonie, A) atakowany przez Ca. Velamenicoccus archaeovorus (małe okrągłe komórki, D). Niektóre komórki archeowca (B, C) są uszkodzone i martwe. Foto: Erhard Rhiel and Jens Harder/Institute of Chemistry and Biology of the Sea and Max Planck Institute for Marine Microbiology. Źródło: Predatory Bacteria (fair use).

Co zawdzięczamy wirusom (6): nowy obraz ewolucji życia

Inne wpisy z tej serii:
Co zawdzięczamy wirusom (1): kilka pytań fundamentalnych
Co zawdzięczamy wirusom (2): bakteriofagi, czyli wielopoziomowa gra strategiczna
Co zawdzięczamy wirusom (3): podstępni włamywacze, czyli wirusy w stylu retro
Co zawdzięczamy wirusom (4): dygresja o naszym genomie i ukrytych w nim wirusach
Co zawdzięczamy wirusom (5): nie ma tego złego, co by na dobre nie wyszło

Jeszcze raz: czym są wirusy?

Badania ostatnich kilkudziesięciu lat, zwłaszcza wskutek postępu, jaki się dokonał  w genetyce i biologii molekularnej, gruntownie zmieniły naszą wiedzę o wirusach (zresztą podobnie jak o organizmach komórkowych). Dość powiedzieć, że o ile pół wieku temu wirusy dzielono umownie na dwie rodziny, dziś klasyfikacja ICTV (Międzynarodowego Komitetu Taksonomii Wirusów) wyróżnia 6 domen, 10 królestw, 72 rzędy i 264 rodziny (nie wspominając o wielu wirusach o niepewnym stanowisku systematycznym), przy czym liczby te rosną dosłownie z miesiąca na miesiąc i jest jasne, że wirusy dotąd zbadane i opisane stanowią tylko ułamek ich rzeczywistej różnorodności.

Badania nad genomiką porównawczą wirusów i nad ich związkami z poszczególnymi grupami organizmów komórkowych rzuciły wreszcie trochę światła na zagadkę pochodzenia wirusów. Opisane w poprzedniej części cyklu innowacje ewolucyjne, które zawdzięczamy wirusom, bledną wobec hipotez, wg których np. DNA i mechanizmy jego replikacji zostały „wynalezione” przez wirusy w czasach, gdy życie komórkowe stawiało pierwsze kroki i było wciąż oparte na RNA jako nośniku informacji.1 Wirusy mogły także odegrać znaczącą rolę w ewolucji eukariontów, uczestnicząc w procesach, które doprowadziły do utworzenia jądra komórkowego. Są to koncepcje spekulatywne, ale traktowane poważnie.

W odróżnieniu od organizmów komórkowych wirusy nie mają uniwersalnego zestawu genów/białek, których homologi (formy sprowadzalne do wspólnego przodka) występowałyby we wszystkich liniach ewolucyjnych. Białka tworzące kapsydy wirusów wyewoluowały niezależnie co najmniej dwa razy, a między różnymi liniami wirusów często zachodziła wymiana poszczególnych modułów genomu, dlatego ich genealogia niekoniecznie układa się w eleganckie drzewo rodowe, ale miejscami przypomina splątany krzak. Znaczna część genów wirusowych nie ma w ogóle odpowiedników wśród organizmów komórkowych. Jeśli wirusy są reliktami świata starszego niż LUCA (ostatni wspólny przodek współczesnych organizmów komórkowych), to mogą przechowywać zakonserwowaną genetycznie informację o wczesnych odgałęzieniach „drzewa życia”, które nie pozostawiły po sobie komórkowych potomków.

Wirusy olbrzymie

Dwadzieścia lat temu (w roku 2003) opisano pierwszego z wirusów-gigantów, zaliczanych obecnie do klasy Megaviricetes. Wraz z dwiema innymi grupami (do których należy np. ASFV, czyli wirus afrykańskiego pomoru świń, oraz cała rodzina wirusów ospy) tworzą one typ Nucleocytoviricota, czyli wirusów olbrzymich w szerszym sensie. Tym gigantem był Mimivirus, pasożytujący na pełzakach Acanthamoeba polyphaga. Kapsyd mimiwirusa ma średnicę ok. 0,5 μm, a wraz z otaczającymi go białkowymi włókienkami – 0,75 μm. Oznacza to, że jest on widoczny pod mikroskopem optycznym. Z tego powodu, choć mimiwirusy obserwowano już we wczesnych latach dziewięćdziesiątych XX w., przez ponad dziesięć lat lat brano je omyłkowo za bakterie.

Mimiwirusy są nie tylko duże, ale i skomplikowane. Mają genomy o długości ponad miliona par zasad, zawierający około tysiąca genów (a nawet ok. 10% DNA „śmieciowego”, co wśród wirusów jest ewenementem). Niektóre z tych genów zawierają introny i są poddawane splicingowi, jak typowe geny eukariontów. Po co wirusowi tak ogromna liczba genów? Oprócz genów normalnie występujących u wirusów (kodujących białka strukturalne i kilka enzymów, bez których wirus nie mógłby się powielać) mimiwirus zawiera też mnóstwo takich, których spodziewano by się wyłącznie u organizmów komórkowych. Kodują one np. swoiste enzymy katalizujące wiązanie poszczególnych aminokwasów z transportowym RNA (syntazy aminoacylo-tRNA), czynniki translacyjne, własną unikatową rodzinę cytochromów P450 (jedną z ich licznych funkcji jest unieszkodliwianie obcych toksyn), białka odpowiedzialne za metabolizm aminokwasów, lipidów i polisacharydów, syntezę nukleotydów czy naprawę DNA. Są tam także geny niekodujące, służące do produkcji tRNA. Funkcja większości genów mimiwirusów pozostaje nieznana i być może jeszcze nas zaskoczy.

Oznacza to, że mimiwirus nie zdaje się na to, co znajdzie u gospodarza, ale włamuje się z całą ciężarówką własnych narzędzi i zakłada fabrykę swoich kopii, funkcjonującą jak organellum komórki żywicielskiej. Ponieważ taką fabrykę mogą wziąć na cel wirofagi (wirusy pasożytujące na wirusach olbrzymich), mimiwirus posiada też zapisane w DNA środki obrony przed wirofagami. Z punktu widzenia koncepcji wirocelu, o której wspominałem na początku tego cyklu, wewnątrzkomórkowe stadium życia mimiwirusa trudno określić inaczej niż jako organizm – i to dość skomplikowany.

Ryc. 1.

Mimivirus wyglądał początkowo na wybryk natury, ale poszukiwania innych wirusów tego typu szybko doprowadziły do podobnych odkryć. Obecnie (1 września 2023 r.) Nucleocytoviricota dzielone są roboczo na 11 rodzin i 54 rodzaje, ale jest oczywiste, że rzeczywista liczba jednostek taksonomicznych w randze rodzin powinna raczej iść w dziesiątki, a rodzajów –  w setki (i dotyczy to wirusów już zaobserwowanych, a nie tych jeszcze nieodkrytych).2 Nie wszyskie są naprawdę olbrzymie, ale rekordziści budzą respekt: mogą mieć kapsydy o długości 1,5 μm (czyli niewiele mniejsze niż komórka bakterii z modelowego gatunku Escherichia coli) albo genomy o długości ok. 2,5 mln par zasad. Zestaw genów odkryty  mimiwirusa nie jest dziwacznym wyjątkiem, ale powszechną cechą wirusów olbrzymich.

O ile początkowo znajdowano gigantyczne wirusy w dość specyficznych środowiskach, obecnie wydaje się, że można na nie natrafić właściwie wszędzie. Wskazują na to badania metagenomowe, identyfikujące ich DNA w rozmaitych środowiskach. Aby potwierdzić ich obecność za pomocą danych morfologicznych, ostatnio zespół mikrobiologów zbadał pod transmisyjnym mikroskopem elektronowym próbki gleby leśnej pobranej z amerykańskiej stacji badań ekologicznych Harvard Forest w stanie Massachussetts, należącej do Uniwersytetu Harvarda. Poszukiwano tworów, które mogłyby być wirionami wirusów olbrzymich. Znaleziono ich setki o najrozmaitszych kształtach, w tym wiele „klasycznych” kapsydów dwudziestościennych, albo pozbawionych dodatków, albo otoczonych włókienkami (jak u mimiwirusa), zaopatrzonych w symetrycznie rozłożone wypustki lub rurkowate ogonki (jak u rodzaju Tupanvirus). Niektóre mają kształt owalny (jak u rodzajów Pandoravirus czy Pithovirus). Sam wygląd nie stanowi niezbitego dowodu, że mamy do czynienia z wirusami, potrzebne są zatem dalsze badania, ale właściwie trudno sobie wyobrazić, czym innym mogłyby być te wirusopodobne cząstki.3

Ryc. 2.

Wirusy olbrzymie z rzędu Algavirales występują szczególnie obficie w środowiskach wodnych, gdzie infekują planktoniczne eukarionty należące do rozmaitych gałęzi drzewa życia. Jednym z nich jest Chlorovirus, którego liczne gatunki pasożytują na jednokomórkowych zielenicach. Jest go tyle, że dla niektórych orzęsków (np. pantofelków, czyli Paramecium) stanowi istotny składnik pokarmowy. Orzęski z rodzaju Halteria są jedynymi znanymi eukariontami, które potrafią przeżyć na diecie złożonej z samych chlorowirusów. W warunkach laboratoryjnych jeden osobnik halterii konsumuje od 10 tys. do miliona wirusów dziennie. Szacuje się, że w niewielkim stawie populacja halterii pożera 1014–1016 (od stu bilionów do stu bilardów) wirusów olbrzymich na dobę, przy czym sama stanowi pokarm dla zooplanktonu. Ten łańcuch pokarmowy  ma zauważalny wpływ na obieg węgla, azotu i fosforu w tym ekosystemie.

Epilog  z morałem

Wirusy nie mają własnego stadium komórkowego, choć można powiedzieć, że są „porywaczami ciał”, uprowadzającymi i wykorzystującymi do własnych celów fenotypy organizmów komórkowych. Nie produkują rybosomów (które są wspólnym dziedzictwem wszystkich potonków LUCA), a zatem nie syntetyzują białek samodzielnie. Do przenoszenia swojego materiału genetycznego używają kapsydów, których białka tworzy gospodarz na podstawie specyfikacji dostarczonej przez wirusa. Czasem pożyczają geny gospodarza, ale częściej same są źródłem innowacji genetycznych i przenoszą do świata organizmów komórkowych geny i białka wcześniej w nim nieznane. Gdziekolwiek występuje życie komórkowe, tam można znaleźć także wirusy, nie ma więc przed nimi ucieczki. Na szczęście jest to naturalny stan rzeczy od około czterech miliardów lat, więc poza epizodami drastycznego naruszenia równowagi wirus–gospodarz koegzystujemy sobie dość harmonijnie.

Tradycyjne wyobrażenie o wirusach jako prymitywnych „czynnikach zakaźnych, których nie zatrzymują porcelanowe sączki bakteryjne”, należących bardziej do świata chemii niż biologii4, jest dziś kompletnie anachroniczne. Wirusy są tak ważnymi uczestnikami życia na Ziemi i jego ewolucji, że akademickie pytanie, czy same wirusy są żywe, w ogóle przestaje mieć znaczenie. I to także zawdzięczamy wirusom: zrozumienie, że definicja życia jest nieostra i że na jego ewolucję trzeba patrzeć z szerokiej perspektywy, w której historia wirusów nie jest przypisem, ale jednym z centralnych rozdziałów.

Przypisy

1) Wirusy mogą oczywiście używać zarówno RNA, jak i DNA w wersji jednoniciowej lub dwuniciowej, ale odwrotna transkrypcja, czyli przepisywanie informacji genetycznej z RNA na  DNA jest specjalnością retrowirusów (w szerokim sensie).
2) Patrz https://ictv.global/taxonomy (domena Varidnaviria, królestwo Bamfordvirae, typ Nucleocytoviricota).
3) Artykuł opisujący te obserwacja dostępny jest w postaci preprintu dopiero oczekującego na recenzje i publikacje: https://www.biorxiv.org/content/10.1101/2023.06.30.546935v1.full
4) Wendell M. Stanley otrzymał w roku 1946 r. nagrodę Nobla nie z „fizjologii i medycyny”, ale z chemii za „wyizolowanie wirusa mozaiki tytoniu w czystej formie krystalicznej”.

Lektura dodatkowa

Embarras de richesse, czyli problemy z klasyfikacją wirusów i potrzeba reformy: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001922
Czego dowiadujemy się o ewolucji od wirusów: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755228/
Wirusy olbrzymie: https://www.sciencenews.org/article/meet-giants-among-viruses
Wirusy olbrzymie a eukarionty i jądro komórkowe: https://www.sciencedirect.com/science/article/pii/S1369527416300017, https://www.sciencedirect.com/science/article/pii/S0168170220310753
Wirusożerne orzęski: https://www.sciencenews.org/article/first-microbes-eat-virus-virovory-algae

Opisy ilustracji

Ryc. 1. Rekonstrukcja drzewa filogenetycznego wybranych wirusów olbrzymich (Nucleocytoviricota). Według obecnego stanu wiedzy drzewo to jest o wiele większe i bardziej skomplikowane. Jest ono zakorzenione w czasach poprzedzająych pojawienie się ostatniego wspólnego przodka organizmów komórkowych (LUCA). Źródło: Colson et al. 2011 (licencja CC BY 3.0).
Ryc. 2. Niektóre z typów morfologicznych potencjalnych wirionów wirusów olbrzymich z Harvard Forest. Źródło: Fischer et al. 2023 (bioRχiv preprint, licencja CC BY-NC-ND 4.0).