Zasada nieoznaczoności a zapis przyszłości

Przeglądając Twittera, natrafiłem na wpis, którego fragment na ilustracji poniżej:

Czy przyszłość każdego z nas jest zapisana? Śmiem wątpić; bliższa mi jest wersja Sary Connor z „Terminatora”: – Nie ma przeznaczenia, bo sami tworzymy nasz los 🙂 „Gdybyśmy mieli urządzenie zdolne do utrwalenia wszystkich parametrów chwili…”, to i tak nie miałoby to żadnego znaczenia dla poznania naszej przyszłości. Skąd we mnie takie przekonanie? Pod wpisem pozwoliłem sobie umieścić żartobliwy komentarz dotyczący Heisenberga i zasady nieoznaczoności: nasz Wszechświat po prostu tak nie działa.

Zasadę nieoznaczoności często tłumaczy się w ten sposób, że nie da się jednocześnie zmierzyć dokładnie dwóch parametrów danego obiektu, np. pędu i położenia, jak na poniższym rysunku:

„Nie da się zmierzyć” – czyli gdyby się dało, to Pan Profesor miałby rację? Nie, z jakiegoś powodu ludzie uczepili się tego „pomiaru” w opisie zasady nieoznaczoności, a tymczasem nawet gdyby nie było żadnych pomiarów, to i tak nie dalibyśmy rady zapisać wszystkich parametrów chwili. Głównie dlatego, że one po prostu nie istnieją w tej formie, jaką sobie wyobrażamy.

Generalnie wszystko było by dobrze, gdy nie Einstein, Planck, de Broglie, Heisenberg i kilku innych, którzy popełnili mechanikę kwantową. Materia w naszym Wszechświecie, jak pewnie pamiętacie, ma taką złośliwą cechę: w zależności od tego, jak sprawdzać, to zachowuje się jakby była cząstkami albo falami, choć nie jest ani jednym, ani drugim. Na lekcjach chemii mówi się o materii tak, jakby składała się z cząstek w postaci kulek o takim czy innym ładunku – i na potrzeby chemii taki opis jest jak najbardziej w porządku; na lekcjach fizyki zaś dowiadujemy się, że światło, które jest falą elektromagnetyczną, można też traktować jako strumień cząstek o określonych energiach, tj. fotonów. I to zazwyczaj wystarczy, żeby przyjąć postawę: „I tak nic z tego nie zrozumiem”.

O tym, skąd pomysł na fotony, szczegółowo opowiemy sobie w tekście, który będzie kolejną częścią po Rozgrzany do czerwoności! i Katastrofa w ultrafiolecie…

Dobra, ale teraz, choćby pokrótce: skąd u fizyków na przełomie XIX i XX wzięła się ta idea sformułowana jako dualizm korpuskularno-falowy? Trochę z obserwacji, a trochę z intuicji de Broglie’a. W tamtych czasach odkryto i potwierdzono istnienie promieniowania elektromagnetycznego, z tym że nie wszystkie obserwacje dało się wyjaśnić, przyjmując, iż to promieniowanie ma naturę fal. Istniały eksperymenty dotyczące zjawisk takich takich jak efekt fotoelektryczny, promieniowanie ciała doskonale czarnego etc., których wyników w żaden sposób nie dało się wyjaśnić przy założeniu, że światło składa się z fal. Problemy z wyjaśnieniem znikły, gdy przyjęto, iż promieniowanie elektromagnetyczne można opisać równorzędnie tak, jakby omiatały nas nie fale, ale krople o określonych wielkościach.

Do takich wniosków doprowadziły między innymi obserwacje zjawiska znanego jako efekt fotoelektryczny. Polega ono na tym, iż gdy oświetlić powierzchnię metalu światłem o określonej częstotliwości, to wybije ono elektrony, powodując wyraźny odczyt elektroskopu. Zjawisko zachodzi wyłącznie przy określonych częstotliwościach światła. Można to zrozumieć bardzo prosto, przyglądając się efektowi gradobicia. Maleńkie kuleczki są po prostu irytujące, duże – zabójcze. Podobnie Einstein wyobraził sobie zjawisko efektu fotoelektrycznego: światło w tym opisie nie przychodzi w falach, ale w paczkach o energiach zależnych od częstotliwości fali światła.

Tylko że takie paczki są w tym opisie bezmasowe, więc jak to pogodzić z E = mc2? Najlepiej to dać dokończyć Einsteinowi: „mc2” to tylko człon całego równania i opisuje on energię spoczynkową. Jeśli obiekt się porusza (a foton robi to zawsze i niezależnie od przyjętego układu odniesienia), to prawdziwy opis tej sytuacji równaniem wygląda tak: E2 = (pc)2 + (mc2)2. Ponieważ mówimy o cząstce, która ma parametr m=0, to całość upraszcza się do następującej postaci: E = pc. Foton może wybić elektron z powierzchni metalu, ponieważ posiada energię i porusza się, a więc posiada pęd opisany jako: p=E/c. Z tego opisu łatwo wywnioskować, że pęd to nic innego niż matematyczny opis tego, jak obiekt się porusza i jakie ma to skutki dla otoczenia.

No i co miałoby z tego wynikać dla samej zasady nieoznaczoności i dualizmu? Ano, przyjrzał się temu kolejny naukowiec, który znał również inne prace Einsteina oraz Plancka. Mam tu na myśli de Broglie’a, o którym wspominałem wcześniej. Wiedział on z prac Plancka, że energię cząstki światła można również wyrazić następująco: E = hν gdzie E oznacza energię, h – stałą Plancka a greckie ν (czytaj: „ni”, nie mylić z v) opisuje częstotliwość fali. Postanowił przyjrzeć się temu dokładniej i przeprowadził kilka operacji z tym równaniem. Zapewne jemu też ν myliło się z v więc postanowił zapisać to inaczej:

Mnie też to nie rzuciło się w oczy od razu – całość trochę naświetlił mi Feynman. Prędkość światła nie pasowała de Broglie’owi po tej stronie równania, więc matematycznie przeniósł ją na drugą, aby sprawdzić, czy całość będzie miała dalej sens, i wtedy to zobaczył 🙂 Przecież pęd fotonów czy też fal elektromagnetycznych wraża związek p=E/c, a więc jeśli prawdziwy jest związek pomiędzy pędem a samą długością fali, to mamy równanie które łączy w sobie korpuskularne i falowe cechy materii.

Po co o tym mówię? Bo de Broglie na tym nie poprzestał, tylko zaczął zastanawiać się nad tym, co właściwie zapisał. Prawa fizyki są wszędzie takie same, zatem skoro foton ma cechy zarówno cząstki, jak i fali, to uznał on na logikę, że nie ma powodu, aby to samo nie dotyczyło na przykład elektronów. Znając pęd elektronu, można obliczyć długość i częstotliwość fali z nim związaną i przy pomocy odpowiedniego eksperymentu sprawdzić, czy elektron zachowuje się jak zwarta kulka, czy też rzeczywistość jest o wiele dziwniejsza, niż nam się zdaje. Te rozważania zaprzątały jego głowę w 1924. Niedługo później, bo już w 1927, udało się uzyskać doświadczalne potwierdzenie jego hipotezy. Panowie Davisson i Germer strzelali do niklowej płytki strumieniem elektronów i zliczali za pomocą detektorów ustawionych pod różnymi kątami, jak się odbijają od jej powierzchni. Dla czegoś tak małego jak elektron nawet najgładsza powierzchnia (z naszej perspektywy) jest pełna nierówności; założyli więc oni, że zwarte kulki będą odbijać się pod różnymi kątami, a wzór na ekranie detektora będzie rozproszony, chyba że de Broglie miał słuszność ze swoim równaniem wówczas…

fot. domen publiczna

Na ilustracji powyżej wyniki eksperymentu, na ilustracji poniżej wynik eksperymentu z dwiema szczelinami (przy użyciu fal światła) gdyby ktoś miał wątpliwości czy dobrze to rozumie:

fot. domena publiczna

Tak mniej więcej i pokrótce doszliśmy do tego, że materia jest… ciężko powiedzieć czym, ale ma pewne właściwości, które potrafimy badać i zapisywać. No, choćby ten pęd. Tylko znów: jaki to ma związek z zasadą nieoznaczoności? Przyszli kolejni naukowcy, spojrzeli na to rozumowanie i zapytali się, czy dla takiej fali materii da się stworzyć równanie falowe, którego rozwiązanie pozwoli nam np. określić położenie elektronu?

Tak, da się, a twórcą tego równania był znany dręczyciel kotów Schrödinger. W czasie wypadu w góry z kochanką stworzył takie coś:

Możemy sobie teraz rozpisać po kolei, co oznacza to wszystko po kolei, rozwiązać je sobie dla przykładowej cząstki, przekształcić do innych postaci itp. Tylko po co? Już teraz pewnie większość Czytelników zastanawia się, czego nie zrozumie za chwilę. W razie czego wyjaśniam: tego co wyraża to równanie nie rozumiał sam autor, który zresztą podważał własną teorię na każdym kroku, bo też nie mógł przyjąć do wiadomości, że jeśli przyjrzeć się rzeczywistości dokładniej, to robi się bardzo dziwnie. To równanie w każdym razie zawiera w sobie prawie wszystkie parametry obiektu takiego jak elektron (nie ma tu np. spinu). Jeśli rozwiązać takie równanie, to wyjdzie nam na przykład taka fala:

To nie jest ścieżka ruchu elektronu ani linia życia czy cokolwiek innego, tylko po prostu elektron. No dobra, a te górki i doliny – co oznaczają? No, to było właśnie dobre pytanie! Te „górki i doliny”, nawiasem mówiąc, w równaniu reprezentuje grecka litera Ψ, czyli psi, oznaczająca funkcję falową. Bez wchodzenia w matematykę: Schrödinger nie wiedział, czy to równanie ma jakikolwiek sens empiryczny, ale na pewien trop wpadł Max Born – równie wielki fizyk tamtego okresu.

Twierdził on, że owe górki i doliny nie oznaczają nic fizycznego, ale jeśli Ψ potraktować matematyką i zapisać tak: |Ψ|2, czyli jako kwadrat modułu funkcji (co to znaczy z matematycznego na polski można sobie dla tego opisu darować), to te „górki i doliny” oznaczają prawdopodobieństwo natrafienia na cząstkę w danym miejscu. Na ilustracji powyżej nie oznacza to, że elektron jest w dwóch miejscach na raz, albo że pojawia się i znika raz w jednym, a raz w drugim, ale że jeśli chcemy znaleźć elektron (czy inną cząstkę o danych parametrach), to największe szanse mamy w danym punkcie przestrzeni – tam gdzie „falowanie fali” czyli jej amplituda ma największą wartość. Oznacza to ni mniej ni więcej, tylko że obiekty kwantowe po prostu same w sobie nie mają określonego położenia, dopóki go nie zmierzymy, np. oświetlając dane miejsce światłem. Zanim nie zaczniemy szukać (i znajdziemy), to nie można powiedzieć, że taki obiekt ma określone położenie w przestrzeni. Spójrzcie raz jeszcze na ilustrację, ona mówi nam wprost, że nie ma pewności, jest prawdopodobieństwo.

No właśnie? Jakie to ma wszystko znaczenie – te fale, pędy, funkcje itp.? Zróbmy to samo, co Feynman, i zastanówmy się, co to wszystko znaczy po kolei. Wyobraźmy sobie elektron, który ma ściśle określony pęd – czyli mamy elektron, który przemierza przestrzeń z określoną, stałą prędkością. Feynman w tym momencie zapewne by się uśmiechnął i zapytał, czy aby na pewno; przecież de Broglie coś odkrył: p = h/λ. Nie mówimy o cząstce w formie kulki frunącej przed siebie, ale o fali, która wyglądałaby w jednowymiarowym uproszczeniu mniej więcej tak:

Jeśli szukamy długości fali dla cząstki, która ma określony pęd p, to musimy przekształcić wzór do postaci λ = h/p. Stała Plancka jest stała, a pęd też ma określoną wartość, więc wynikiem musi być fala mająca „górki i doliny” w równych odległościach od siebie. Ponieważ pęd ma tylko jedną wartość, to gdziekolwiek spojrzeć, fala wygląda tak samo. Teraz pomyślcie, co to oznacza dla opisu zasady nieoznaczoności.

Skoro pęd mamy dobrze oznaczony, to jego nieokreśloność wynosi 0, a ile wobec tego wynosi nieokreśloność położenia? Gdzie należy szukać cząstki? Jeśli jedna wielkość wynosi zero, to druga musi zmierzać do nieskończoności, a cały zapis traci sens. Przypatrzcie się tej fali i porównajcie ją z poprzednią. W tym przypadku wartość Ψ wynosi wszędzie tyle samo, co oznacza, że prawdopodobieństwo znalezienia obiektu o takich parametrach jest takie samo w każdym miejscu Wszechświata – a to bez sensu. Co trzeba zrobić, aby cząstka miała jednak bardziej oznaczone położenie? Jak sprawić aby amplituda tej fali w którymś z jej punktów była równa 0? Jak to powiedział Feynman na jednym swoich wykładów: „Po prostu dodaj kolejną falę o nieco innej długości, i zobacz, jak wygląda ich suma”.

I teraz już widać, że są takie obszary, gdzie prawdopodobieństwo namierzenia obiektu jest większe, bo takie nakładające się fale wzajemnie się wzmacniają i wygaszają. Tylko spójrzcie, co to oznacza: dodaliśmy falę, a więc obiekt nie ma już teraz tylko jednej wartości p, ale p1 i p2, co automatycznie powoduje, że nieważne, jak byśmy próbowali mierzyć – mamy przysłowiowe szanse 50 na 50 że będzie to p1 lub p2. Te wartości, jak widzicie z ilustracji, nie różnią się jakoś dramatycznie, ale są wyraźnie inne. I to, z którym z tych parametrów przyłapiemy cząstkę na detektorze, absolutnie nie wynika z niczego. Po prostu albo orzeł, albo reszka.

Tyle właściwie teorii. Możemy oczywiście sobie jeszcze popróbować tworzyć różne fale, ale widać od razu, że im bardziej zlokalizowany ma być obiekt, tym więcej fal (a więc możliwych wartości pędu) należy dodać, co zwiększa nam jego nieoznaczoność – i w drugą stronę tak samo. Żeby nasze zabawy mogły dać jakiś sens fizyczny, to wynik musi spełniać poniższą zależność:

Wartości tych parametrów tj. nieoznaczoności pędu i położenia nie mogą po prostu wynosić zero bo w konsekwencji otrzymujemy albo obiekt z ściśle określonym pędem ale jednocześnie wiemy że że należy go szukać z równym prawdopodobieństwem wszędzie lub obiekt który jest maksymalnie zlokalizowany ale jednocześnie z niepewnością pędu dążącą do maksimum a takich obiektów po prostu nie ma – a to w konsekwencji wyklucza możliwość „zapisania wszystkich parametrów chwili”. Nasza przyszłość nie jest nigdzie zapisana bo jej po prostu jeszcze nie ma – musimy tam dosłownie dotrzeć zmieniając swoją pozycję w czasie. Póki co dotarliśmy do końca tych przydługich rozważań. Wszelkiego rodzaju uwagi, komentarze, argumenty przeciw mile widziane.

A już kolejnym razem powiemy sobie o Plancku i o tym jak łyżką narobił bałaganu w fizyce.

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem
.

1. O świetle słów kilka…

Nad tym, jak zbudowany jest otaczający nas świat, debatowano już od Starożytności. Greccy filozofowie zakładali iż wszystko, a więc również światło, jest zbudowane z niewielkich drobin. Ten model, podobnie jak inne tworzone w tamtych czasach (np. model geocentryczny), okazał się być pięknym i gładkim w detalach oraz niewiele wartym w założeniach. Jeśli światło miałoby być cząstkami to powstaje poważny problem z wyjaśnieniem codziennych zjawisk – na przykład załamania na granicy dwóch ośrodków. Każdy z nas widział jak łyżka „łamie się” gdy wsadzić ją do szklanki. Z tymi problemami borykano się do praktycznie do XIX wieku – uczeni tacy jak Kartezjusz, Hooke czy Huygens próbowali stworzyć teorie dotyczące falowej natury światła. Jednak nadal, głównie pod wpływem Newtona, dominowało przekonanie iż światło składa się z cząstek.

Długo rozmyślał nad tym Thomas Young. W czasie swoich przemyśleń obserwował fale powstające na tafli wody – przyglądał się temu, jak nakładają się na siebie wzajemnie wzmacniając się i wygaszając. Postanowił sprawdzić czy ma to zastosowanie również dla światła. Z pewnością wielu z was słyszało o „eksperymencie z dwiema szczelinami”. Jest on genialny w swej prostocie i możliwy do przeprowadzenia przez każdego. Young wpuścił światło słoneczne do pomieszczenia przez otwór a następnie przepuścił je przez dwie szczeliny – na ścianie ukazał się wzór szerzej znany jako prążki interferencyjne. Spójrzmy na prostą ilustrację wykonaną w notatniku:

Jak łatwo zauważyć, fale światła, podobnie jak fale wody, nakładały się na siebie wzajemnie się – w miejscu gdzie nałożyły się ich „szczyty”, na ścianie powstawał prążek światła. Gdyby światło składało się z cząstek, to zdrowy rozsądek podpowiada inny rezultat:

Jest to sytuacja którą można łatwo porównać do kopania piłki tak aby trafić w bramkę poprzez dwie szczeliny – część z nich odbije się od ściany, a pozostałe powinny trafiać w mniej więcej te same miejsca „bramki”. Tymczasem, gdyby przepuścić światło słoneczne przez otwór o średnicy ok. 0.5 cm na podwójnej szczelinie o długości 1 cm i odległości 0,5mm to naszym oczom powinien ukazać się taki obraz:

fot. Aleksandr Berdnikov, MIT

Taka sytuacja sprawiła, iż w XIX wieku modele falowe zostały uznane powszechnie. Duży udział miały w tym prace Maxwella, który badał naturę pola magnetycznego i elektrycznego. Jego prace, oparte na czystej matematyce, doprowadziły go do wniosku iż są to dwa rodzaje tego samego oddziaływania które porusza się jako fala, a światło jest jedną z nich. Ciekawostką jest to, iż z jego równań można wyprowadzić równanie określające prędkość rozchodzenia się takiej fali dla próżni, którego wynik świetnie zgadza się z obserwacjami. Hipotezę Maxwella niedługo później potwierdził Hertz odkrywając fale radiowe. To właściwie zadecydowało o odrzuceniu cząsteczkowego modelu światła. Jednakże teoria Maxwella nie wyjaśnia wszystkich efektów związanych z światłem. Tu musimy wrócić na chwilę do pierwszego z obrazków – według tej teorii energia takiej fali ma związek z jej natężeniem a nie częstotliwością. Tymczasem wiele niezależnych eksperymentów pokazało iż jest dokładnie na odwrót. Energia przekazywana atomom przez światło wynika z jego częstotliwości a nie natężenia. Przykładem mogą być tu zjawiska zaobserwowane przez Comptona oraz Einsteina.

Sprawcą zamieszania w tym eleganckim modelu okazał się być wcześniej wymieniony Hertz który zaobserwował ciekawe zjawisko gdy badał wcześniej odkryte fale radiowe – wysyłał fale radiowe i starał się je odebrać za pomocą odbiornika składającego się w uproszczeniu z pierścienia i cewki. Ilekroć do odbiornika docierała fala na cewce przeskakiwała iskra. Zaciekawiony umieścił odbiornik w ciemnym pudle aby móc lepiej zaobserwować ową iskrę w czasie skoku. Niestety, ale umieszczenie urządzenia w owym pudle jedynie osłabiło efekt. Winna okazała się być jedna z ścianek owego pudła którą była szklana szyba pochłaniająca promienie UV. Gdy tylko wymienił szkło na kwarc który UV nie pochłania efekt powrócił. Hertz nie znalazł wyjaśnienia dla tego zjawiska ale opublikował pracę z której skorzystał Einstein starający się wyjaśnić inną rzecz znaną szerzej jako efekt fotoelektryczny.

Fizycy oświetlając powierzchnię równych przedmiotów zauważyli, iż padające światło jest zdolne wybijać pojedyncze elektrony z powierzchni i niezależnie od jego natężenia zjawisko zachodzi tylko dla pewnych częstotliwości światła. Im większa była długość fali, tym mniejsza była energia kinetyczna wybitego elektronu. Powyższe wnioski są sprzeczne z klasyczną teorią – energia wybitego elektronu powinna być związana z natężeniem światła, a zjawisko powinno zachodzić nawet dla niższych częstotliwości światła przy odpowiednim natężeniu. Tymczasem doświadczenie pokazuje, że w rzeczywistości jest inaczej. Kolejną obserwację poczynił Compton, gdy próbował rozpraszać promieniowanie rentgenowskie i gamma na bloku grafitu – gdy porównywał natężenie fali „wejściowej” i „wyjściowej”, zauważył iż fala wyjściowa to tak naprawdę dwie fale. Jedna o długości fali padającej a druga była większa w zależności od kąta pod jakim obserwował promieniowanie.

Powyższe wyniki Einstein i Compton mogli wyjaśnić tylko w jeden sposób – światło jest nie tyle falą co strumieniem materialnych cząstek które zderzając się z elektronami przekazują im część swojej energii a tym samym pędu.

Jednakże fala to fala a cząstka to cząstka – jak więc wyjaśnić tą dziwaczną dualną naturę fotonu? Odpowiedź pojawiła się szybko i gdy tylko się pojawiła natychmiast spowodowała u wielu fizyków potężny ból głowy o czym kolejnym razem.

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem
.