Niestraszna opowieść o kwantowych duchach – straszny artykuł w prasie…

Dlaczego nie “część szósta”? Zawinił tekst, który przeczytałem pod tym linkiem https://next.gazeta.pl/next/7,172392,30816448,niezwykle-odkrycie-na-antak.html

Zastanawiam się, jakim cudem tekst na tym poziomie przeszedł przez redakcję i korektę, a następnie został opublikowany na tzw. “dużym portalu”. Z czasów mojej kariery pedagogicznej znam ten styl: lanie wody, aby zapełnić miejsce na kartce lub na ekranie pomiędzy reklamami. Uczniowi bym jakoś wybaczył − w końcu kto z nas lubił odrabiać zadania domowe? Tu jednak rozmawiamy o osobie, która zawodowo zajmuje się pisaniem tekstów mających popularyzować naukę. Nie jest to pierwszy raz, gdy na tym czy innym portalu natrafiam na tekst podobnych lotów − zawierający błędy, niejasne skróty myślowe, oczywiste przeinaczenia; tekst, który pozostawi wrażenie typu “znów coś ci naukowcy robią − i tak nie zrozumiem”. Znalezienie informacji i napisanie porządnego artykułu to coś, co wielu z nas robi za darmo, po prostu to, jak działa Wszechświat, jest fascynujące. Nasz blog właśnie popularyzacją nauki się zajmuje, toteż myślę, że podobnie, jak nie jest to pierwszy tekst tego rodzaju, który tu publikuję, nie będzie on również ostatnim. Zacznijmy więc od nagłówka, z którego ma wynikać, iż naukowcy dokonali ciekawego odkrycia na Antarktydzie:

Neutrina przenikają niepostrzeżenie, ale mają ogromne znaczenie w badaniach. Mogą one bowiem pomóc w pozyskaniu nowych informacji o Wszechświecie. Naukowcy najprawdopodobniej wykryli ostatnimi czasy siedem “cząsteczek-duchów” na Antarktydzie.

Początkowo myślałem, iż określenie “cząsteczki-duchy” to po prostu przenośnia, i tak bym myślał, gdybym nie przeczytał kolejnego akapitu, w którym autorka opisuje, co wspomniani naukowcy na Antarktydzie robią:

Naukowcy IceCube Neutrino Observatory przez niemal 10 lat badali cząsteczki elementarne, a niedawno najprawdopodobniej udało im się wykryć siedem potencjalnych neutrin. Potocznie bywają nazywane “cząsteczkami duchami”, ze względu na swoje rozmiary. Są one bowiem najmniejszymi cząsteczkami znanymi ludzkości i skrywającymi tajemnice kosmosu.

Zanim opowiemy sobie, co kryje się pod nazwą “IceCube”, przeczytajmy akapit do końca. Tak się zastanawiam, ile razy trzeba będzie jeszcze przypomnieć proste zasady terminologii: jeśli “elementarne” to tylko i wyłącznie CZĄSTKI. Jeśli mówimy o elektronie, mionie, kwarku, bozonie − to jest to zawsze CZĄSTKA ELEMENTARNA. Ze względów historycznych cząstkami elementarnymi nazywa się również bariony i mezony, będące układami trzech kwarków lub parą kwark – antykwark. Dlatego neutrino można nazwać “cząstką duchem” ale nie “cząsteczką”. Pojęcie “cząsteczki” jest związane z molekułami i chemią, a więc można bezpiecznie mówić o cząsteczkach wody, tlenu, kwasu solnego, chlorku sodu etc. Dlaczego korekta przepuściła tak oczywisty błąd? Dalej jest tylko ciekawiej: rozmiary cząstek elementarnych. Nie, nie wierzę, że tego rodzaju sformułowanie padło w tekście, który ma naukę popularyzować.

Obiekty tego rodzaju nie mają konkretnych rozmiarów, to nie ma sensu w ich przypadku. Cząstek elementarnych nie można traktować jak kulek mających dokładne średnice. Te obiekty przypominają coś bardziej ulotnego. Nasze teorie opisują kwarki, elektrony i neutrina jako bezwymiarowe punkty. Neutrina nie są “najmniejsze”, bo nie znamy dokładnych rozmiarów cząstek, ale jak wskazują dotychczasowe eksperymenty, z pewnością mają najmniejszą masę z cząstek budujących materię. Samej masie neutrin i problemach z nią związanych poświęcę osobny odcinek cyklu, to naprawdę złożone zagadnienie.

Czym jest wspomniane IceCube Neutrino Observatory? To jest superzabawka dla fizyków! Prawie tak super jak LHC, czyli Wielki Zderzacz Hadronów.

fot. CC BY-3.0

Otóż naukowcy wpadli na genialny pomysł, aby w lodzie Antarktydy wywiercić ponad 80 otworów o głębokości ponad dwóch kilometrów, a następnie spuścili tam liny, na których zawieszono odpowiednie fotodetektory. Jest ich tam ponad 5 tysięcy, gotowych zarejestrować każdy ślad ducha ku uciesze naukowców. Dlaczego na Antarktydzie i po co aż tyle? W poprzednich częściach cyklu opowiedzieliśmy sobie o naturze neutrin: mają niezwykle małą masę, nie przenoszą ładunku elektrycznego i bardzo słabo oddziałują z materią. Na ich ślad natrafiliśmy przez przypadek: zdawało się, że obserwowane zjawisko łamie znane nam zasady zachowania. Bezpośrednie obserwacje takich cząstek są niemożliwe, możemy za to obserwować efekty ich działania. Skoro oddziałują słabo, to szanse na obserwacje tych efektów są minimalne. Możemy je jednak zwiększyć poprzez budowę większego detektora lub użycie wydajnego źródła neutrin.

Jeśli chcemy polować na neutrina powstające przy okazji rozpadu beta, użycie wydajnego źródła, jakim jest np. reaktor jądrowy, wydaje się sensowne. Jednak przy polowaniu na neutrina mionowe czy taonowe traci sens. W rozpadzie beta nie mogą powstać inne neutrina niż elektronowe. Wszechświatem rządzą zasady zachowania. Dobrym źródłem innych neutrin jest tzw. “wtórne promieniowanie kosmiczne” powstające, gdy w cząstki budujące ziemską atmosferę uderzają cząstki pochodzące z innych części kosmosu, którym ogromny pęd nadały np. wybuchy supernowych. Ponieważ nie mamy wpływu na intensywność tego opadu, to wniosek jest prosty: do obserwacji neutrin tych rodzajów potrzeba odpowiednio dużego detektora.

Do wykrycia neutrin elektronowych wystarczyły baseny zawierające chlorek kadmu. Znajdowały się blisko reaktora, a więc neutrin było dużo, stąd nie musiały mieć dużych rozmiarów. No to teraz zastanówmy się, gdzie na naszej planecie jest dużo wody i czy musi być koniecznie cieczą? Antarktyda jest przecież pokryta ogromną ilością lodu! Prawda, że to duży detektor? Ma też dodatkową zaletę: detektor neutrin musi być maksymalnie wolny od zanieczyszczeń i ekranowany przede wszystkimi przed innymi cząstkami, które przecież też oddziałują z materią. IceCube jako bariery używa… całej planety. Przedmiotem zainteresowania naukowców są tylko te ślady, które pojawiają się “od dołu” detektora. Pomyślcie: cząstka, która wzbudziła zainteresowanie detektora, musiała przejść od bieguna północnego przez całą planetę. Poza neutrinami żadne tak nie potrafią! Dokładnie o samym detektorze IceCube, jego poprzedniczce o imieniu AMANDA oraz pozostałych i sposobach ich działania opowiem w osobnej części cyklu. Tymczasem wróćmy do omawianego tekstu:

Specjaliści obserwują cząsteczki na Antarktydzie i wykorzystują do tego tysiące detektorów. Istnieją trzy rodzaje neutrin: elektronowe, mionowe i taonowe. Naukowcy stwierdzili, że te, które wykryli na Antarktydzie, są najprawdopodobniej neutrinami taonowymi, które uchodzą za najtrudniejsze do zaobserwowania.

Zgadzam się: istnieją trzy rodzaje neutrin i odpowiadające im antyneutrina. Skąd to właściwie wiadomo? Z masy zetonu. Aby nie było żadnych wątpliwości − “zetonu”, nie “żetonu”. Bozon Z jest trzecią z cząstek przenoszących oddziaływanie słabe, które odpowiada między innymi za rozpady, w których neutrina powstają. Proces ten zawsze przebiega w dwóch etapach: cząstka elementarna emituje odpowiedni bozon, który następnie rozpada się na odpowiednie kombinacje cząstek elementarnych zgodnie z zasadami zachowania. Co masa tej cząstki może nam powiedzieć o tym, ile istnieje rodzajów innych cząstek? Zeton jest masywny, bardzo masywny jak na cząstkę − jego masa to mniej więcej 90 razy masa jądra wodoru lub w przybliżeniu tyle, ile wynosi masa jądra uranu. Emisja takiej cząstki wymaga energii. Jak pamiętamy, w naszym Wszechświecie można “pożyczyć” sobie energię potrzebną do takiej emisji wprost z próżni. Problem tylko tkwi w tym, że im więcej się bierze, tym szybciej trzeba oddać − zgodnie z zasadą nieoznaczoności. Oznacza to, że czas życia zetonu jest bardzo krótki, ale niezerowy. Zgodnie z prawami mechaniki kwantowej, im krótszy jest czas życia rozpadającej się cząstki, tym więcej istnieje kombinacji cząstek, na które może się ona rozpaść. Mierząc czas życia zetonu, jesteśmy w stanie określić, ile istnieje rodzajów neutrin. Wyniki wielokrotnie powtórzonych doświadczeń wskazują, że istnienie innych rodzajów neutrin niż znane trzy, jest raczej niemożliwe, gdyż musiałby one mieć masę większą od samego zetonu, co oznacza, że sam bozon powstały z “pożyczonej z próżni energii” musiałby jej pożyczyć jeszcze więcej.

Dlaczego neutrina taonowe uchodzą za najtrudniejsze do zaobserwowania? Odpowiedź znów opiera się o masę, tym razem taonu. Lepton ten ma masę ok. 1777 MeV (elektron, dla porównania, to ok. 0,511 MeV). Powstanie tak ciężkiej cząstki wymaga naprawdę energetycznych zderzeń, a te są rzadkie. Stąd taonów powstaje niewiele, a jeszcze mniej dociera ich do nas z uwagi na ich masę. Rozpadają się dość szybko, a nasze detektory nie mogą być wszędzie. Dlatego jesteśmy zmuszeni cierpliwie czekać i liczyć na łut szczęścia, któremu pomagamy rozmiarami detektora na Antarktydzie. W kolejnym tekście postaram się przybliżyć, co dokładnie zrobiono na Antarktydzie i skąd tych “siedmiu krasnoludków” mających być neutrinami taonowymi.

Jeśli po przeczytaniu tego tekstu nadal macie pytania, to możecie je śmiało zadawać w komentarzach. Zapraszam również do przeczytania poprzednich części cyklu i oczekiwania na następne.

Poprzednie części cyklu:

Niestraszna opowieść o kwantowych duchach – część pierwsza

Niestraszna opowieść o kwantowych duchach – część druga

Niestraszna opowieść o kwantowych duchach – część trzecia

Niestraszna opowieść o kwantowych duchach – część czwarta

Niestraszna opowieść o kwantowych duchach – część piąta

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem
.

Pułapka na miony

Jeden z poprzednich tekstów na naszym blogu pt. Ciemna materia, czyli królowa jest naga w świetny sposób przybliżył nam temat związany z materią, która, jeśli istnieje, to oddziałuje z pozostałą wyłącznie za pomocą grawitacji i być może za pośrednictwem oddziaływań słabych. Jeśli nie czytaliście, to gorąco zachęcam.

Moje poprzednie wpisy miały zaś na celu przybliżenie aparatu matematycznego, którego używamy do opisu materii i oddziaływań zebranych razem jako Model Standardowy. O ile można łatwo zgodzić się z istnieniem elektronów i kwarków górnych oraz dolnych, o tyle pozostałe cząstki, takie jak neutrina czy cięższe leptony, czyli mion i taon, wydają się dziwną koncepcją. Czy mamy jakiekolwiek dowody na to, że są to realne cząstki, a nie wyłącznie matematyczne twory, które ładnie pasują do modelu? Mamy i to nawet obserwacyjne!

Detekcja neutrin jest nie do przeprowadzenia w warunkach domowych – głownie z uwagi na rozmiar detektorów. Umówmy się, że mało kto ma możliwość umieszczenia w piwnicy zbiornika zawierającego 50 000 ton wody. Jednak możemy pokusić się o próbę upolowania innych cząstek znanych nam z modelu standardowego, czyli właśnie mionów, i zaraz dowiecie się jak zrobić to w domu!

Czym są same miony? Mają właściwości dokładnie takie jak znane nam elektrony – są leptonami, czyli nie oddziałują silnie; posiadają ładunek elektryczny, czyli oddziałują elektromagnetycznie; posiadają jak wszystkie fermiony połówkowy spin i podlegają oddziaływaniu słabemu. Tym, co odróżnia je od elektronów, jest masa – 105,65 MeV, czyli są około 200 razy cięższe. Z pewnością oddziałują grawitacyjnie, ale jak wspomniałem wcześniej, nie posiadamy żadnej teorii pozwalającej nam opisać takie efekty ani tym bardziej nie mamy możliwości ich obserwacji w takich skalach.

Skąd owe miony się biorą? Generalnie to z kosmosu, a ściśle – z górnych warstw atmosfery, która jest cały czas bombardowana wysokoenergetycznymi cząstkami pochodzącymi ze Słońca, promieniowania kosmicznego, wybuchów supernowych, zderzeń gwiazd neutronowych itp. Te cząstki poruszają się z prędkościami bliskimi prędkości światła, a ich zderzenia z jądrami atomów budujących naszą atmosferę dają kaskadę cząstek wtórnych, pośród których najliczniej występują różnego rodzaju mezony, w tym piony.

Tu krótkie przypomnienie: mezony to cząstki zbudowane z pary kwark–antykwark; nie są to cząstki trwałe i szybko ulegają rozpadowi. Produktem takich rozpadów są właśnie miony, które są również cząstkami nietrwałymi – ich średni czas życia wynosi 2,197 · 10−6 s, czyli w przybliżeniu 2,2 mikrosekundy. I tu można właściwie zapytać: to jakim cudem chcemy je łapać w domu, skoro do warstw atmosfery, gdzie powstają, mamy jednak kawałek liczony w dziesiątkach kilometrów, podczas gdy tak krótki czas życia pozwala na przebycie dystansu jakiśch 660 metrów, co możemy łatwo udowodnić, przekształcając wzór V = s/t, aby uzyskać s, czyli drogę? Rozwiązaniem tej zagadki jest V, jakie musimy umieścić w tym równaniu – powstałe miony poruszają się z prędkościami bliskimi prędkości światła, a przecież Einstein miał rację! Pamiętacie o zjawisku znanym jako dylatacja czasu? Jeśli jakiś obiekt w stosunku do nas porusza się z prędkościami bliskimi c, to jego czas płynie wolniej w stosunku do naszego. O ile wolniej? Da się to dość łatwo obliczyć, jeśli wiemy, z jaką prędkością taki mion się porusza – dla uproszczenia przyjmijmy, że jest to 99% prędkości światła w próżni:

Pod grecką literą gamma kryje się tzw. czynnik Lorentza, który mówi nam, że zegar takiego mionu w stosunku do naszego „tyka″ około 70 razy wolniej, co oznacza, że jego 2,2 mikrosekundy wyglądają dla nas jak 0,15 milisekundy, a więc taki mion może przebyć znacznie większy dystans, bo około 40 kilometrów. Miony, które obserwujemy, są kolejnym dowodem na to, że Einstein miał rację, a takie efekty naprawdę istnieją! To jak złapać taki mion w kuchni? Samą cząstkę to będzie ciężko – obiektów tak małych gołym okiem zobaczyć się nie da, okiem ubranym (poprawnie: uzbrojonym, ale nie mogłem się powstrzymać) także. Możemy jednak zaobserwować efekty, jakie wywołują, a konkretnie trajektorie, po jakich się poruszają, za pomocą urządzenia, które zbuduje każdy bez większej wiedzy technicznej przy pomocy rzeczy, które są do nabycia bez większych kłopotów w sklepach i przez internet. Mam tu na myśli coś, co jest szerzej znane jako komora mgłowa lub komora Wilsona, za pomocą której udowodniono między innymi istnienie pozytonów.

Komora mgłowa czyli domowy detektor cząstek

Sama nazwa tego urządzenia sugeruje jego zasadę działania: w jej wnętrzu nie ma cząsteczek np. pyłów, na których powierzchni para mogłaby ulegać kondensacji. Z pewnością słyszeliście pojęcie „jądra kondensacji″: jest to właśnie taka cząsteczka, na której para może zacząć się skraplać. Nie musi być to koniecznie pył czy kurz. Takie właściwości mają również jony, które powstają, gdy we wnętrzu naszej komory znajdzie się cząstka obdarzona sporą energią. Pary alkoholu ulegną kondensacji na powstałych na trasie takiego przelotu zjonizowanych cząsteczkach, czego efektem będą „chmurki″ o różnej grubości i długości, o czym za chwilę.

To tyle teorii a teraz powiedzmy sobie jak zbudować taką „pułapkę na miony″? No to poniżej lista zakupów:

Prawda, że nic skomplikowanego? Jeśli nie uda się wam zdobyć akwarium w tych rozmiarach, spokojnie może zostać zastąpione np. plastikowym pudełkiem (z tym że plastik musi być przezroczysty); filc można spokojnie zastąpić inną tkaniną. Blachy zaś muszą dobrze pasować do pojemnika, tak aby powstające wewnątrz pary nie uchodziły na zewnątrz. Z braku blach można wykorzystać jakiś pojemnik i przykryć go metalem w kolorze czarnym, co zapewni dobry kontrast i ułatwi obserwacje. Całość brzmi banalnie i taka jest – a przy pomocy tej metody uzyskano dwie nagrody Nobla 🙂

Suchy lód umieszczamy na dnie jednej z blach – można go dodatkowo pokruszyć tak, aby powierzchnia była pokryta możliwie równomiernie. Przypominam, że suchy lód to zestalony dwutlenek węgla, więc eksperyment należy przeprowadzić w dobrze wentylowanym pomieszczeniu, a dłonie i oczy należy ochraniać za pomocą rękawic i gogli. Blachę z lodem przykrywamy drugą. Filc umieszczamy na dnie akwarium – przytwierdzić można go w dowolny sposób; ważne, aby unikać różnych klejów, gdyż te zostaną błyskawicznie rozpuszczone przez izopropanol, którym należy nasączyć wspomniany filc. Alkoholu powinno być tyle, aby tkanina była mokra, ale by z niej nie kapało, gdy odwrócimy akwarium do góry dnem i umieścimy na blachach z suchym lodem. Eksperyment prowadzimy po ciemku, a wnętrze komory należy oświetlić latarką. Po kilku minutach wnętrze komory powinno wypełnić się oparami alkoholu chłodzonymi przez suchy lód; skrzypiące dźwięki są całkowicie naturalną konsekwencją zetknięcia metalu z tak zimną powierzchnią. Po kwadransie będziecie widzieli już liczne ślady, które są konsekwencją przelotu różnych rodzajów cząstek. Poniżej ilustracja:

Chude, proste linie to miony lub antymiony. Taki kształt tworzącej się „chmurki″ wynika z tego, że poruszają się niezwykle szybko, a więc posiadają dużą energię kinetyczną. Jeśli zauważycie nagłe załamanie lini tak jakby cząstka gwałtownie skręciła, to zaobserwowaliście rozpad mionu na elektron i odpowiednie neutrina. Gruba, krótka chmurka to dowód na istnienie ciężkich cząstek alfa, a cieniutka, pofalowana to zjawisko związane z odpychaniem się elektronów o tożsamym ładunku.

Gorąco zachęcam do przetestowania tej metody detekcji cząstek oraz do zadawania pytań. No i może podzielenia się efektami eksperymentu 🙂

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem