Niezwykłe odkrycie w rozbłysku gamma

25 października 2023 roku NASA ogłosiła, że odkryto tellur. No dobrze, nie tyle odkryto (bo odkryty został na Ziemi już w XVIII w.), co zidentyfikowano podczas badań kosmicznych. I to odkrycie ma naprawdę duże znaczenie.

Skąd się wzięły pierwiastki chemiczne

Ale zacznijmy od tego, dlaczego ta informacja jest bardzo istotna. Musimy się cofnąć o niemal 14 mld lat, do czasu, w którym dopiero zaczęły powstawać pierwiastki chemiczne. Na samym początku powstało jądro wodoru, najprostszego z pierwiastków, składające się z jednej cząstki, protonu. Kolejnym był hel (2 protony + 2 neutrony). W kolejnym etapie tzw. pierwotnej nukleosyntezy (tworzenia jąder atomowych) powstawały następne jądra – deuteru i litu. Następnie mamy reakcje „spalania” wodoru – oczywiście nie jest to spalanie takie, jakie znamy z reakcji wodoru z tlenem (tlenu przecież jeszcze nie ma!). Powstają wtedy jądra takich pierwiastków, jak węgiel, azot, tlen itd. – aż do żelaza (Fe). I tu kończy się to, co produkują zwykłe gwiazdy. Nie są w stanie wyprodukować żadnego cięższego atomu. No dobrze, ale przecież wiemy, że na Ziemi (i w kosmosie) mamy sporo pierwiastków cięższych niż żelazo. Skąd one się wzięły?

W skrócie: gwiazda, która się wypaliła zaczyna zapadać się grawitacyjnie pod własnym ciężarem. W jej centrum jest sporo żelaza, dalej są lżejsze pierwiastki, takie jak krzem (Si), tlen (O), neon (Ne), aż do wodoru. Ciśnienie wewnątrz rośnie do niewyobrażalnych wartości i w końcu ten kosmiczny tygiel eksploduje. Jest to niesamowite zjawisko, które znamy jako supernową. Obserwujemy gwałtowny wzrost jasności gwiazdy, po czym ona szybko gaśnie – przestaje być widoczna, ale pozostaje po niej efektowna mgławica. Ciśnienie przed eksplozją powoduje wydzielenie się neutronów, które łączą się z jądrami żelaza, dając początek cięższym pierwiastkom. Nazywamy go „procesem r” (rapid – szybki), ponieważ biorą w nim udział szybkie neutrony. Po ich pochłonięciu następuje szereg emisji elektronów, co przesuwa powstające jądro w prawo w układzie okresowym. Kilka zdań o tym procesie napisał Lucas

No i to w zasadzie wszystko – ugotowane w kosmicznym tyglu pierwiastki rozprzestrzeniają się w kosmosie, docierając czasem bardzo daleko. Teoria tych przemian została rozpracowana kilkadziesiąt lat temu przez kilku znaczących astrofizyków. Powtarzam: to była teoria, a, jak wiemy, papier wszystko wytrzyma. A dowody eksperymentalne? No właśnie – z tym był problem. Nie bardzo się da w laboratorium ziemskim stworzyć gwiazdę, spowodować jej przekształcenie w supernową i zrobić analizę tego, co się wydzieli. Do supernowej też nie polecimy, bo jest za daleko. Ale już wiele lat temu panowie Kirchhoff i Bunsen wpadli na pomysł, jak można zdalnie analizować światło emitowane przez obiekty kosmiczne. Pisałem o tym tutaj. Niemieccy fizycy oczywiście obserwowali światło widzialne, ponieważ w owym czasie nie zdawano sobie jeszcze sprawy z tego, że jesteśmy cały czas bombardowani promieniowaniem elektromagnetycznym o znacznie szerszym zakresie fal. Dziś już całkiem dobrze potrafimy je wykrywać i analizować. Od jakiegoś czasu astrofizyka coraz częściej sięga do obserwacji promieniowania gamma. Jest to silne promieniowanie elektromagnetyczne, niosące olbrzymią energię. Astronomowie zajmujący się tym promieniowaniem wyodrębnili osobną dziedzinę nauki, astronomię promieniowania gamma. Niestety, obserwacji nie da się prowadzić z powierzchni Ziemi, ponieważ atmosfera skutecznie je pochłania. Na szczęcie można wykorzystać do tego celu balony oraz rozmaite obserwatoria kosmiczne.

Rozbłyski gamma

W 1967 roku amerykański satelita wojskowy zarejestrował błysk promieniowania gamma. Wczesne analizy zakładały, że był on efektem próby jądrowej na terytorium ZSRR. Kolejne badania pokazały jednak, że nie pochodzą one ze źródeł ziemskich ani też z Układu Słonecznego. Kluczem tu jest izotropowość tych rozbłysków, czyli to, że dochodzą one do Ziemi dokładnie z wszystkich kierunków przestrzeni kosmicznej, jak promieniowanie reliktowe. Gdyby natomiast GRB pochodziły z bliska, tzn. z wyłącznie z Układu Słonecznego, rejestrowano by ich więcej w płaszczyźnie układu/dysku

Dziś rozbłyski gamma są wykrywane przez wiele teleskopów, głównie tych, które znajdują się w kosmosie. Są to gigantyczne wyrzuty wysokoenergetycznego promieniowania, a więc muszą pochodzić z bardzo wielkich zdarzeń kosmicznych. Zwykle jest to albo zderzenie gwiazd neutronowych albo takiej gwiazdy z czarną dziurą. Rozróżniamy rozbłyski krótkie (do 2 s), długie (powyżej 2 s) oraz bardzo długie (powyżej 10 tys. s). Najczęściej rejestrowane są rozbłyski długie.

Do gry wchodzi teleskop Jamesa Webba

Pod koniec października NASA opublikowała informację, że zespół kilku teleskopów, w tym James Webb Telescope oraz Fermi Gamma Ray Telescope, w marcu 2023 r. zarejestrował bardzo silny rozbłysk gamma, który oznaczono jako GRB 230307A.

Obraz rozbłysku GRB 230307A – to jest ta mała czerwona kropka po lewej. Z prawej galaktyka, z której „urwały się” gwiazdy

Dokładna analiza pokazała, że rozbłysk pochodził ze zderzenia dwóch gwiazd neutronowych odległych od Ziemi o ok. 1 mld lat świetlnych. Jak do tego doszło? Dawno, dawno temu w odległej galaktyce (tak, wiem, skąd ten cytat) para gwiazd się zbuntowała i odleciała. Gdy znalazły się w odległości ok. 120 tys. lat świetlnych od macierzystej galaktyki, nastąpiło między nimi gwałtowne zderzenie. Spowodowało ono emisję promieniowania gamma milion razy silniejszą niż całe światło Drogi Mlecznej. Zjawisko to znane jest pod nazwą „kilonowa”, ponieważ wydzielona energia odpowiada mocy tysiąca zwykłych nowych. Pierwsze teoretyczne modele tego zjawiska opracował polski astronom, Bohdan Paczyński (dalej będzie trochę o nim).

Po +/- miliardzie lat promieniowanie to dotarło do Ziemi i zostało zarejestrowane. Cała obserwacja trwała ok. 200 s. Uzyskano wiele bardzo interesujących danych, z których za najważniejszą uznano potwierdzenie obecności w pozostałościach po gigantycznym wybuchu śladów telluru, pierwiastka znacznie cięższego niż żelazo. Jest to dość rzadki pierwiastek, w układzie okresowym znajdziemy go w grupie tlenowców, pomiędzy selenem i polonem.

Widmo emisyjne kilonowej – schodkowe dane są z teleskopu Webb, czerwona linia to model widma emisyjnego. Powierzchnia pod krzywą (czerwona) wskazuje na obecność telluru.

Źródło: NASA, licencja:  domena publiczna, NASA, ESA, CSA, Joseph Olmsted (STScI)

Powstał on najprawdopodobniej w procesie r, który opisałem powyżej. To, że uzyskano takie właśnie dane, zawdzięczamy właśnie teleskopowi Webba. Część danych wskazuje, że są tam też obecne cięższe pierwiastki – lantanowce i aktynowce, ale to jeszcze wymaga solidnego potwierdzenia. Badacze uważają, że analizy kolejnych rozbłysków gamma pozwolą na wykrycie kolejnych ciężkich pierwiastków, co przyczyni się do doświadczalnego potwierdzenia, że właśnie proces r odpowiada za nukleosyntezę jąder cięższych od żelaza.

Swoistą ciekawostką jest to, że wykryto właśnie tellur, pierwiastek, którego nazwa pochodzi od łacińskiego „tellus”, co oznacza ziemię. W skorupie ziemskiej jest go zaledwie 5 ppb (części na miliard) i oczywiście każdy z atomów powstał gdzieś daleko podczas eksplozji lub zderzeń gwiazd.

Myślę, że niebawem dostaniemy wiele więcej informacji, nie tylko z tego rozbłysku, ale też z innych, które są obecnie analizowane.

Bohdan Paczyński (1940-2007)

źródło: wikimedia, licencja: CC BY SA 3.0

Jeśli spytalibyśmy ludzi o wybitnych polskich astronomów, zapewne padłoby nazwisko Kopernika. Ktoś pewnie wspomniałby jeszcze Aleksandra Wolszczana, pierwszego odkrywcę egzoplanety. I tyle. Tymczasem Bohdan Paczyński wielokrotnie był wymieniany jako kandydat do Nobla. Niesamowicie błyskotliwy pierwszy artykuł naukowy opublikował w wieku 18 lat, doktorat obronił w wieku 24, a tytuł profesorski otrzymał w wieku lat 34. Gdy miał 36 lat, został najmłodszym członkiem PAN. Zajmował się wieloma zagadnieniami, w tym właśnie rozbłyskami gamma. Od 1981 roku pracował w Princeton. Jego hipoteza o tym, że rozbłyski gamma pochodzą spoza naszej galaktyki, była przez lata ignorowana, dopiero po jakimś czasie zaczęła zyskiwać popularność. Dziś wiemy, że miał w 100% rację. Szkoda, że nie dane mu było dożyć odkryć z ostatnich lat. Zmarł w 2007 roku, po kilkuletniej walce z glejakiem mózgu.

Literatura dodatkowa

Doniesienie NASA o odkryciach

Bardzo długie rozbłyski gamma

O powstawaniu ciężkich pierwiastków chemicznych

Kosmiczne laboratorium chemiczne – część 2

Część pierwszą znajdziecie tutaj.

Kosmiczna retorta

Wszechświat składa się z atomów, takich samych na Ziemi, a atomy lubią się ze sobą łączyć. Naturalnym pytaniem, które od dawna nurtowało uczonych, było: czy tam, w kosmosie, są takie same związki chemiczne? Z jednej strony właściwości chemiczne atomów są niezależne od tego, gdzie one się znajdują, ale z drugiej wiadomo było, że w kosmicznej retorcie możemy napotkać warunki inne niż w ziemskich laboratoriach. Wewnątrz gwiazd mamy ekstremalnie wysokie temperatury i ciśnienia, z kolei w przestrzeni międzygwiezdnej temperatura jest zbliżona do zera absolutnego, a do tego panuje tam próżnia, jakiej nie da się uzyskać na Ziemi. Dlatego też chemicy z dużym zaciekawieniem zaczęli współpracować z astronomami przy analizie danych otrzymywanych z przestrzeni kosmicznej.

Najpierw jednak badano meteoryty. Nie znaleziono w ich składzie żadnych egzotycznych pierwiastków, których nie ma na Ziemi (co jest dość oczywiste), ale już badania składu izotopowego wykazały, że często różni się on od ziemskiego. Także minerały w meteorytach mają w wielu wypadkach inny skład.

W ostatnich latach wykazano obecność w meteorytach związków organicznych pochodzenia pozaziemskiego, takich jak uracyl, cytozyna czy tymina. Skąd wiadomo, że są spoza Ziemi, a nie stanowią zanieczyszczeń stąd? Sprawa jest dość prosta – kosmiczne mają nieco inny skład izotopowy. Niektóre meteoryty z grupy chondrytów węglistych (np. australijski Murchison) zawierają niezwykle dużo takich związków – aminokwasów, zasad nukleinowych, węglowodorów alifatycznych i aromatycznych, kwasów sulfonowych oraz związków fosforu.

Australijski meteoryt Muchison (chondryt węglisty)
Źródło: Wikimedia, licencja: CC BY-SA 3.0

Z kolei w 2015 r. lądownik Philae zbadał powierzchnię komety 67/P i znalazł tam m.in. szesnaście związków organicznych.

Cały czas prowadzone są też badania zdalne. Jest to do pewnego stopnia praca detektywistyczna, polegająca na poszukiwaniu swoistych „odcisków palców”, czyli emitowanych przez konkretne molekuły fal elektromagnetycznych o konkretnym zestawie długości fali (zapoczątkowali to Bunsen i Kirchhoff). Jest to zadanie dość trudne. W pierwszym etapie poszukuje się sygnałów związków czy też rodników, które możemy wytworzyć tu, na Ziemi. Jednakże kosmiczny tygiel ze względu na specyficzne właściwości pozwala na powstanie niezwykłych połączeń, których tutaj nie ma albo też skrajnie trudno je wytworzyć.

Egzotyka chemiczna we Wszechświecie

Historycznie rzecz biorąc, pierwszym dwuatomowym indywiduum chemicznym, które zaobserwowano (już w roku 1937) w kosmosie był metylidyn (CH). Prawdopodobnie wszyscy znają najprostszy związek organiczny, metan, czyli CH4. Jeśli od tego związku oderwiemy trzy atomy wodoru, pozostanie właśnie dwuatomowy rodnik CH. Nie jest to typowa cząsteczka chemiczna, ale coś bardzo reaktywnego. Gdy próbujemy uzyskać metylidyn na Ziemi, musimy zadbać, aby w okolicy nie było niczego, z czym mógłby się związać. Jest to skrajnie trudne. Zupełnie inaczej jest w kosmosie. Choć my widzimy z daleka np. obłoki międzygwiezdne, musimy sobie zdawać sprawę, że panuje tam próżnia, jakiej nie damy rady wytworzyć na Ziemi. Dlatego też taki rodnik nie ma w pobliżu niczego, z czym mógłby w miarę szybko zareagować. I właśnie to pozwala mu istnieć bardzo długo. Dotyczy to oczywiście nie tylko metylidynu, ale wszystkich innych rodników oraz cząsteczek. Szacuje się, że średni czas pomiędzy zderzeniami cząsteczek w obłokach międzygwiezdnych to 2 tygodnie, w tym czasie muszą one przebyć nawet 100 tys. km.

Lista związków i rodników w przestrzeni kosmicznej rośnie. Dość szybko znaleziono takie rodniki jak CN (cyjan) oraz OH (rodnik hydroksylowy), a także dość reaktywny związek chemiczny – formaldehyd (HCHO), ale dotychczas wykryto ich już setki.

Co ciekawe, jedynym związkiem nieorganicznym o pięciu atomach jest analog metanu, krzemowodór SiH4. Większe są zawsze związkami węgla. Można więc powiedzieć, że kosmos jest po prostu organiczny.

Od początku XXI w. astrochemicy donoszą o coraz to nowych związkach identyfikowanych w rozmaitych miejscach. W 2004 stwierdzono, że mgławica protoplanetarna Czerwony Czworokąt w gwiazdozbiorze Jednorożca jest szczególnie bogata w wielopierścieniowe węglowodory aromatyczne (WWA), takie jak antracen i piren (uwaga: jeśli znajdziecie się tam, nie wdychać, bo rakotwórcze!).

Mgławica protoplanetarna Czerwony Czworokąt (gwiazdozbiór Jednorożca)
Źródło: Wikimedia, licencja: domena publiczna

W ostatniej dekadzie WWA wykryto w wielu innych miejscach, w tym w atmosferze Tytana, największego księżyca Saturna.

Wyobraźnię ludzi rozpalają czasem doniesienia o znalezieniu gigantycznych obłoków etanolu. Jego ilości są niewyobrażalne, ale potencjalni miłośnicy wysokoprocentowych napojów muszą zdawać sobie sprawę, że znajduje się on co najmniej 10 tys. lat świetlnych od Ziemi. Co gorsza, nie jest czysty – razem z nim zaobserwowano takie związki jak tlenek węgla (czad), amoniak (NH3) czy też cyjanowodór (HCN). Znacznie częściej obserwuje się jednak obłoki metanolu, który jest prostszą cząsteczką. Z drugiej strony dużym zaskoczeniem było odkrycie w kosmosie fullerenów, czyli cząsteczek składających się z 60 lub 70 atomów węgla ułożonych w kształt wielościanów półforemnych.

Jak więc widać kosmiczne laboratorium chemiczne jest pełne odczynników. Są one co prawda znacznie rozproszone (nie licząc atmosfery planet i księżyców), ale mimo to astrochemicy uważają, że wszędzie przebiegają reakcje chemiczne, czasami niezwykle egzotyczne. Tu istotnym czynnikiem jest czas. Izolowany rodnik czy cząsteczka prędzej czy później spotka się z inną, z którą będzie mogła zareagować. Jeśli nie nastąpi to w ciągu roku, to może się to zdarzyć za milion czy też miliard lat. Wszechświat jest cierpliwy.

Po co to wszystko?

Takie pytanie pada często, gdy toczone są rozmowy o dość wyrafinowanych badaniach. Faktycznie można się zastanawiać nad tym, co nas obchodzi, że gdzieś tam, miliony lat świetlnych od nas, znajdują się jakieś cząsteczki tlenku węgla, benzenu czy też glicyny. I tak ich tu nie sprowadzimy, aby sprzedać z zyskiem. I tu wyjaśnienia są dwa. Po pierwsze, jest to ludzka ciekawość naukowa. Chemicy teoretycy, korzystając z dostępu do superkomputerów, modelują nie tylko te związki / rodniki, które możemy obserwować w ziemskich pracowniach, ale też bardzo egzotyczne, których tu nigdy nie otrzymamy. Tego typu obliczenia pozwalają na uzyskanie informacji o tym, w jakich zakresach promieniowania elektromagnetycznego poszukiwać ich śladów. Po drugie – badanie kosmicznego tygla może nam pomóc zrozumieć chemiczną ewolucję Wszechświata. Tam, daleko, może być odpowiedź na podstawowe pytania o to, skąd się wzięło życie. Jak widać, kosmos jest pełen związków organicznych – są one zaskakująco trwałe nawet w warunkach skrajnie niskiej temperatury i bombardowania promieniowaniem kosmicznym. Oczywiście z faktu obecności wielu nawet całkiem złożonych związków chemicznych nie wynika wprost to, że gdzieś tam jest jakieś życie. Wszyscy pamiętamy klasyczny dziś już eksperyment Stanleya Millera, w którym w warunkach laboratoryjnych udało się zasymulować pierwotne warunki panujące na Ziemi. Uzyskano sporo aminokwasów i innych prostych związków organicznych, ale od takiej organicznej zupy do powstania życia jest jednak zdecydowanie daleka droga. Mimo wszystko współczesne odkrycia pozwalają na nowo przyjrzeć się hipotezie panspermii. Prawdopodobnie jako pierwszy wspominał o niej grecki filozof Anaksagoras, ale tak naprawdę więcej o tym mówili tacy uczeni, jak Berzelius czy lord Kelvin. W XX w. bardziej złożoną hipotezę panspermii przedstawił Svante Arrhenius. Zgodnie z jego koncepcją życie miało być przenoszone w kosmosie z wykorzystaniem ciśnienia światła. Hipotezę tę popierali tacy znakomici uczeni, jak Fancis Crick czy Nalin Chandra Wickramasinghe.

Jedno jest pewne: dalsze badanie kosmosu przyniesie nam zapewne wiele odpowiedzi, ale zrodzi też równie dużo pytań – nie tylko z zakresu chemii czy fizyki, ale i wielu innych nauk.

Kosmiczne laboratorium chemiczne – część 1

Żyjący na przełomie XVIII i XIX w. francuski filozof Auguste Comte zajmował się rozmaitymi dziedzinami nauki. Wniósł olbrzymi wkład w zapoczątkowanie pozytywizmu, był także twórcą pojęcia socjologii. Jednak nawet wybitni filozofowie czasami się mylą. W książce „Kurs filozofii pozytywnej” (wydanie 1835) pisał:

„Jeśli chodzi o gwiazdy, to wszelkie badania, które wykraczają poza zwykłe obserwacje, są (…) dla nas siłą rzeczy niedostępne. (…) Nigdy nie będziemy w stanie w żaden sposób poznać ich składu chemicznego. (…) Uważam też, że nigdy nie dowiemy się, jaka faktycznie jest średnia temperatura poszczególnych gwiazd”.

Oj, nie powinno się używać słowa „nigdy”, jeśli mówimy o sprawach naukowych. Już w 1814 r. Joseph von Fraunhofer, połączywszy lunetę z pryzmatem, zaobserwował w widmie Słońca pasma absorpcyjne, które dziś znamy pod nazwą „linii Fraunhofera” (to są te czarne linie w widmie, wynikające z absorpcji przez atmosferę słoneczną promieniowania pochodzącego z jego wnętrza). Można uznać, że był to początek spektroskopii astronomicznej.

Oryginalne widmo zarejestrowane przez von Fraunhofera
Źródło: Wikimedia, licencja: CC BY SA 4.0

Chociaż tak naprawdę zaczęło się od pewnego pożaru.

Pożar w Mannheim

Za ojców spektroskopii astronomicznej uznawani są powszechnie Gustav Kirchhoff oraz Robert Bunsen. Spotkali się oni w połowie XIX w. na uniwersytecie w Heidelbergu. Wykorzystując skonstruowany przez Bunsena palnik oraz ulepszoną w ich laboratorium lunetę z pryzmatem, badali szereg soli, które wprowadzane do płomienia nadawały mu charakterystyczne barwy. Urządzenie to, nazwane spektroskopem, pozwoliło im na odkrycie w lokalnej wodzie mineralnej dwóch nowych pierwiastków – cezu (Cs) i rubidu (Rb). Po pracy w laboratorium lubili wspólnie spacerować po okolicy, wędrując ścieżką zwaną Drogą Filozofów. I właśnie tam, pewnego wieczoru, latem 1859 roku, mieli okazję obserwować olbrzymi pożar, który wybuchł w odległym o 20 km Mannheim. Wpadli na pomysł, aby szybko wrócić do pracowni i obserwować płomienie przy użyciu skonstruowanego wcześniej spektroskopu. Bez problemu stwierdzili zdalnie obecność w widmie m.in. charakterystycznych linii pochodzących od sodu. Po kilku kolejnych dyskusjach Bunsen wpadł na dość ekscentryczny pomysł. Może warto sprawdzić, co się stanie, gdy połączy się ich spektroskop z teleskopem i skieruje na Słońce? Strzał w dziesiątkę! Światło wędruje w przestrzeni kosmicznej na olbrzymie odległości i w zasadzie nic go nie zakłóca.

Metoda obserwacji zdalnej stworzona przez Kirchhoffa i Bunsena zatriumfowała już po kilku latach, gdy francuski astronom Pierre Janssen odkrył w 1868 r. w widmie słonecznym pomarańczową linię, której nie dało się przyporządkować do żadnego ze znanych pierwiastków. Tak odkryto hel. Nauka dostała potężne narzędzie do analizy chemicznej obiektów znajdujących się w kosmosie.

Na początku były jednak problemy z kluczowym elementem, który rozszczepiał światło, czyli z pryzmatem. Mały dawał niezbyt dobre rozszczepienie, a otrzymanie dużego pryzmatu zbudowanego z jednolitego szkła było bardzo trudnym wyzwaniem inżynierskim. Dlatego też sięgnięto po inny znany już od jakiegoś czasu element rozszczepiający światło, a mianowicie siatkę dyfrakcyjną, która znacząco ulepszyła uzyskiwane widma. Ewolucji ulegała też detekcja promieniowania. Pierwotnie było ono rejestrowane na klasycznej płycie fotograficznej, dziś rolę tę pełnią matryce CCD.

Zasada działania siatki dyfrakcyjnej (wynalezionej w 1821 przez Fraunhofera)
Źródło: Wikimedia, licencja: CC BY SA 3.0

Początkowo analizy wykonywano, posługując się wyłącznie przychodzącym z kosmosu światłem widzialnym. Trzeba zdawać sobie sprawę, że stanowi to bardzo istotne ograniczenie – obserwowane widma pozwalają nam tylko na określenie składu pierwiastkowego obiektów wysyłających takie właśnie promieniowanie elektromagnetyczne.

Najważniejsze jest niewidoczne dla oczu”

Ten klasyczny cytat z „Małego Księcia” idealnie pasuje do idei, które legły u podstaw konstrukcji kolejnych narzędzi do badania Kosmosu. Już w XIX w. naukowcy zdawali sobie sprawę, że światło widzialne jest tylko niewielkim wycinkiem całego zakresu częstotliwości fal elektromagnetycznych. Spektroskopia w zakresie światła widzialnego była bardzo użyteczna, ale wyniki otrzymywane tą metodą były tylko ułamkiem tego, co można odczytać z nieba. Kolejnym wielkim krokiem było stworzenie narzędzia obserwacyjnego, które pozwalało na poszerzenie zakresu rejestrowanego promieniowania. Powstało ono niejako przypadkowo, podczas badania zakłóceń transatlantyckich transmisji radiowych. Inżynier z amerykańskiej firmy Bell Labs, Karl Jansky, na początku lat 30. XX w. skonstruował olbrzymią antenę, przy pomocy której udało mu się zarejestrować dochodzące z Kosmosu niewidzialne gołym okiem promieniowanie wodoru o długości fali 21 cm. Był to moment, który można uznać za początek radioastronomii. Dziś jest to podstawowe narzędzie wykorzystywane do badania tych obiektów, które August Comte uznał za będące na zawsze poza zasięgiem badaczy na Ziemi.

Oryginalna antena Karla Jansky’ego – pierwowzór radioteleskopu
Źródło: Wikimedia, licencja: CC BY SA 3.0

O tym, co można badać i co ciekawego zostało wykryte w kosmicznym tyglu, napiszę w drugiej części.