Genealogiczne i kodujące DNA: sukcesy, kontrowersje i bajki

Zestawienie bajki o Jamesie Bondzie z autentyczną historią o zabójcy autostopowiczki i Polakach wysyłających DNA do Chin może się wydawać nie na miejscu. Pokazuje to jednak, w jakim świecie się znaleźliśmy. W świecie, w którym realne odkrycia naukowe, coraz trudniej odróżnić przeciętnemu zjadaczowi chleba od fantastycznych historii. Coraz trudniej jest też wytłumaczyć, dlaczego pewne badania DNA, np. badania STR, dają ograniczoną wiedzę o nas i są dopuszczalne, a niektóre (np. badania eksomów) mogą stanowić wyciek kolejnych bardzo prywatnych danych. Taki mamy klimat, fikcja miesza się z rzeczywistością. Sukcesy biologii są coraz bardziej pozytywnie zaskakujące, ale jednocześnie coraz łatwiej tworzyć teorie spiskowe.

Sukces FBI z października tego roku, to schwytanie zabójcy po 50 latach dzięki badaniu DNA (STR) jego krewnych, zdeponowanego do badań rodowodowych. Z drugiej strony DNA polityków jest strzeżone. Zabiega się, by nie wpadło w niepowołane ręce. Filmowcy nakręcają „Nie czas umierać” (007), gdzie jakoby tworzy się „personalizowaną broń biologiczną”. Kandydat Donalda Trumpa na Szefa Departamentu Zdrowia i Opieki Społecznej w USA, Robert F. Kennedy Jr., insynuuje, że SARS-CoV-2 stworzyli Chińczycy, tak żeby mniej atakował Żydów (głównie aszkenazyjskich), wykorzystując dane o ich DNA. Polacy deponują DNA w Chinach, przed czym ostrzegają polskie służby.  Jak się w tym połapać? Kto opowiada bajeczki i buduje teorie spiskowe, a kto robi coś pożytecznego?

Dlaczego sprawa zabójcy z 1974 roku była trudna?

W 1974 roku w Stanach Zjednoczonych zamordowano autostopowiczkę. Przez kilkadziesiąt lat nie udawało się znaleźć mordercy, pomimo że na miejscu zbrodni znaleziono DNA, które należało do sprawcy. Badania genetyczne prowadzi się w kryminalistyce od połowy lat 80., a zabójca nie trafił do grupy osób podejrzanych lub sprawców czynów zabronionych, których DNA się analizuje. Nie można wykonać badań DNA milionów potencjalnych sprawców w kraju takim jak USA.

Jak więc ostatecznie ustalono, kto był sprawcą, pomimo że FBI nie miało w czasie śledztwa dostępu do DNA sprawcy spoza miejsca zbrodni dla porównania?

W XXI wieku w Stanach Zjednoczonych miliony ludzi wysłało jednak swoje DNA na badania. Bardzo modne są tam np. badania genealogiczne. Dzięki temu FBI (Federalne Biuro Śledcze) ma stopniowo dostęp do coraz większej liczby fragmentów sekwencji DNA Amerykanów. Wśród tych wysyłających DNA na badania rodowodowe nie było zabójcy, ale w tej grupie znaleźli się członkowie jego rodziny. FBI ma dostęp nie do całych genomów osób, które poddały się badaniom, ale do takich fragmentów genomów, które pozwalają określić tożsamość – profili DNA. FBI nie musi więc mieć w pierwszym etapie DNA pozyskanego od sprawcy (poza miejscem zbrodni do porównania), aby z sukcesem prowadzić (wznowić) śledztwo. Dzięki dostępowi do sekwencji DNA określających tożsamość różnych osób, w tym z rodziny sprawcy, DNA znalezione w miejscu zbrodni pozwala zidentyfikować najpierw jego krewnych, a dopiero potem wskazać podejrzanego i ostatecznie nawet zidentyfikować go jako sprawcę. Formalnie dostępne dla FBI są wzorce (sygnatury) – loci z charakterystyczną liczbą powtórzeń alleli mikrosatelitarnych/STR (ang. short tandem repeats, krótkie tandemowo powtarzane sekwencje DNA). Ten typ działalności nazywa się śledczą genealogią genetyczną investigative genetic genealogy (IGG). Takie DNA na potrzeby tytułu nazwano również genealogicznym. W ostatnich latach wskazywania sprawców dzięki tym badaniom prowadziło również do uniewinnienia osób skazanych. Bracia Bintz zostali oczyszczeni z zarzutu gwałtu i morderstwa po 24 latach.

Genetic Genealogy Can Stop Violent Criminals and Free the Wrongly Convicted | Scientific American

Sprawa morderstwa implikuje pewne dylematy prywatność vs. bezpieczeństwo

W opisanych przypadkach nikt nie ma wątpliwości, że takie badania i dostęp do baz danych są uzasadnione. Natomiast generalnie implikuje to pytanie o to, jaką wiedzę o członkach społeczeństwa mogą mieć instytucje rządowe. Badania STR przypominają trochę (chociaż jest ważna różnica) badania odcisków palców (daktyloskopijne). Obecnie każdy udostępnia swoje odciski palców w wielu sytuacjach, chociażby występując o paszport. Badanie STR, co do zasady, nie ujawnia żadnych danych genetycznych o osobie poza jej tożsamością. Nie da się na tej podstawie przewidzieć choroby, czy ogólnie cech zależnych od genomu. Z drugiej strony, jeśli ktoś inny jest deklarowanym rodzicem, a ktoś inny biologicznym, to FBI może mieć o tym wiedzę dzięki badaniu STR, a badanie odcisków palców takiej wiedzy nie daje. Zależność między liniami papilarnymi rodziców i dzieci jest niewielka i nawet bliźnięta jednojajowe mają inne linie papilarne, ale mają w zasadzie takie same sekwencje STR. Na podstawie odcisków palców członków rodziny sprawcy nie da się wytypować sprawcy. Analogia odcisku palca nie jest więc precyzyjna. Wydaje się jednak, że badania genealogiczne DNA będą dopuszczalne w kryminalistyce. Tym bardziej, że jak opisano powyżej, wykorzystano te badania z powodzeniem do oczyszczenia osób niewinnych a skazanych.

Więcej o badaniach DNA w kryminologii dla „Eksperyment myślowy” pisał Marcin Czerwiński.

Na tropie przestępców, czyli analiza DNA w kryminalistyce (1) – Eksperyment Myślowy

Nie każde badanie DNA daje tak ograniczoną wiedzę o jego właścicielu jak badanie fragmentów STR

Badanie części kodującej daje o wiele większą wiedzę niż badanie STR. Amerykanie są oskarżani o zbieranie DNA światowych polityków. Przy czym jednocześnie bardzo dbają o to, żeby DNA ich polityków nie dostało się w niepowołane ręce. Stało się to nawet inspiracją do fabuły „Nie czas umierać” (James Bond 007), gdzie na podstawie sekwencji DNA stworzono selektywną (personalizowaną) broń biologiczną. To oczywiście bajka. Podobnie jak to, że Chińczycy stworzyli SARS-CoV-2 w oparciu o sekwencje DNA Europejczyków i Amerykanów, w tym Żydów, żeby siać większe spustoszenie wśród pewnych grup etnicznych. Nie ma takiej możliwości. Autor próbował odnieść się do tej problematyki w tym tekście: Wirus Marburg (MARV) vs. SARS-CoV-2 – Eksperyment Myślowy. Twierdzenia Roberta F. Kennedy’ego juniora o tworzeniu SARS-CoV-2 w takim celu stanowią przykład typowej teorii spiskowej. Nie da się jej zbudować bez posiadania pewnego punktu zaczepienia. Na tym ogólnie polegają działania wielu pseudonaukowców, manipulatorów i dezinformatorów. Na podstawie pewnych realnych sytuacji, jak wykrywanie sprawców po badaniach STR czy diagnostyka chorób genetycznych po badaniach eksomów, tworzy się absurdalne narracje. Miesza się przekazy prawdziwe z całkowicie fikcyjnymi, wyolbrzymia się pewne możliwości, a przeciętna osoba ma prawo mieć problem z odróżnieniem realności od fikcji. Przecież DNA polityków jest z jakiegoś powodu chronione, a James Bond nie dla każdego jest postacią całkowicie fikcyjną.

Czy zagrożenie związane z przekazywaniem DNA do analiz w ogóle nie istnieje?

Czy Polacy deponują gdzieś swoje „DNA”? Tak, robią to np. coraz częściej właśnie w Chinach. Bo Chińczycy za stosunkowe małe pieniądze obiecują, że na podstawie badań genomu wiele dla deponujących „przepowiedzą”. Jest to często obietnica bez pokrycia. Do Chin trafiają też próbki DNA zdesperowanych rodziców, którzy próbują dokonać poważnej diagnostyki chorób genetycznych dzieci. Szacuje się, że w Chinach znajdują się próbki 100 tysięcy Polaków. Obywatele z kraju wolnościowców deponują swoje DNA (i to nie tylko sekwencje STR ale sekwencje kodujące/eksom) w kraju, który uważają za miejsce ograniczania wolności. A co z tym zrobią Chińczycy? Mogą wykorzystać to DNA np. do profilowania farmakologicznego. Tworzenia terapii, które będą skuteczniejsze dla Europejczyków, aby podbić nasz rynek jakimś lekiem. Mogą zdobyć o kimś wiedzę, która będzie uznana za jego słabość, jak np. predyspozycja do choroby.

Rozeznanie, co jest naukowe, a co pseudonaukowe, jest coraz trudniejsze. Jest to jednak nadal możliwe przy odrobinie cierpliwości i gotowości do studiowania tych zagadnień.

W trakcie pracy nad tekstem wiele cennych uwag wnieśli: Wiesław Seweryn i Tomasz Kubowicz.

Mary Schlais Wisconsin 1974 cold case solved after killer identified with genetic genealogy | CNN

Genetic genealogy: How a field pioneered by amateurs changed the way cops solve cold cases | CNN

Justice Delayed but not Denied: Bintz Brothers Exonerated After 24 Years with the Help of IGG – Investigative Genetic Genealogy Center (IGG)

Chiny posiadają ok. 100 000 polskich genomów. Komitet Genetyki Człowieka PAN alarmuje

Na tropie przestępców, czyli analiza DNA w kryminalistyce (1)

Zbrodnia doskonała to taka, w której nie pozostawiono śladów. Rzecz w tym, że zawsze jakieś ślady zostają. Zwłaszcza obecnie, dzięki badaniom DNA, wystarczy kilka komórek, żeby można było określić tzw. profil DNA i za jego pomocą zidentyfikować osobę, do której te komórki należały. Takie profile DNA umieszcza się w bazach danych. Każdy kraj ma takie bazy i korzysta z nich w służbie egzekwowania prawa. Co zawierają te bazy? Kto pierwszy wpadł na pomysł, żeby wykorzystać DNA w kryminalistyce i medycynie sądowej?

Sir Alec Jeffreys

Pionierem zastosowania analizy DNA w kryminalistyce był brytyjski genetyk Alec Jeffrey z uniwersytetu w Leicester. W 1984 r., badając DNA członków swojego zespołu, zauważył istnienie regionów znacznie różniących się sekwencjami. Nazwał je regionami minisatelitarnymi, a publikacja „Charakterystyczne dla każdej osoby „odciski palca” ludzkiego DNA” (Individual-specific `fingerprints’ of human DNA) ukazała się w Nature w 1985 r. Opisał w niej regiony DNA, które mogą służyć jako „genetyczne odciski palca”. W tym samym roku metoda ta umożliwiła ustalenie rodziny kilkuletniego chłopca, a rok później przyczyniła się do identyfikacji sprawcę morderstwa w Narborough, Leicestershire. W 1992 r. Alec Jeffreys pomógł też niemieckiej prokuraturze w identyfikacji zwłok dr. Jozefa Mengele, który utonął w Brazylii w 1979 r. Za swoje odkrycia został uhoronowany m.in. nagrodą Alberta Laskera w 2006 r. (Ryc. 1).

Ryc. 1. Sir Alec Jeffreys. Źródło: PLoS Genetics, licencja CC BY 2.5.

Za sprawą Aleca Jeffreysa Wielka Brytania stała się pierwszym krajem, w którym zastosowano analizę DNA w kryminalistyce i dochodzeniu ojcostwa. Na podstawie jego odkryć stworzono Narodową Bazę Danych Zjednoczonego Królestwa (United Kingdom National DNA Database), która jest zarządzana przez Ministerstwo Spraw Wewnętrznych (Home Office). Sam Alec Jeffreys od początku uważał, że rząd nie powinien mieć dostępu do tych danych, i taka baza powinna być utrzymywana przez niezależną instytucję.

Regiony minisatelitarne czyli STR

Ludzki genom liczy ponad 3 miliardy par zasad, i różnice sekwencji między ludźmi są niewielkie. Ale są wyjątki: odkryte przez Aleca Jeffresa regiony minisatelitarne, zwane też krótkimi powtórzeniami tandemowymi (short tandem repeats, STR), są sekwencjami DNA zawierające powtórzenia o długości 2 – 7 par zasad. Liczba powtórzeń może być inna u każdego człowieka. Takie powtórzone sekwensje stanowią 3% ludzkiego genomu, a zdecydowana większość (92%) jest w regionach niekodujących, czyli takich, które nie kodują białek ani RNA. Do niedawna uważano, że jest to tzw. śmieciowe DNA, ale coraz więcej dowodów przemawia za tym, że mogą pełnić różne funkcje regulatorowe.

Regiony zawierające STR mutują o wiele częściej niż inne fragmenty naszego genomu. Skutkiem jest ich duże zróżnicowanie: wiele regionów STR zawiera różną liczbę powtórzeń. Wystarczy wybrać kilka – kilkanaście regionów STR o szczególnie dużym zróżnicowaniu i użyć ich jako „metek” (można je porównać do kodów kreskowych), które są unikalne dla każdego człowieka.

CODIS i ESS

CODIS, czyli Combined DNA Index System, jest amerykańską bazą danych zawierającą dane dotyczące ludzkiego DNA, stworzoną w 1990 r. i utrzymywaną przez FBI. Podobnymi bazami danych dysponują policje w innych krajach. W Europie bazy te tworzy się w ramach zbliżonego do CODIS protokołu European Standard Set of STR (ESS). Przeważnie bazy te zawierają cztery oddzielne zbiory: skazanych za przestępstwa, aresztowanych, osób zaginionych oraz śladów DNA z miejsca przestępstwa. W 2020 r. bazy danych CODIS zawierały profile DNA 14 milionów przestępców, 4 milionów osób aresztowanych i milion śladów z miejsca przestępstwa. W Europie największą bazą danych w stosunku do liczby obywateli dysponuje Wielka Brytania. W 2020 r. liczyła ona 6,6 miliona profili DNA, czyli zawierała profil DNA co dziesiątego obywatela.

Bazy danych CODIS/ESS zawierają od 13 do 16 loci genetycznych (czyli określonych lokalizacji w chromosomach). Wszystkie te loci to STR zawierające powtórzenia o długości 4 par zasad (Ryc. 2).

Ryc. 2. Podstawowe 13 loci krótkich powtórzonych fragmentów (STR) stosowane w bazach CODIS i ESS. TPOX, FGA i VWA to geny kodujące odpowiednio peroksydazę tarczycową, fibrynogen A i czynnik von Willebranda. AMEL to gen kodujący emalogeninę, który służy do określania płci. Pozostałe to regiony zawierające STR na różnych chromosomach (np. D16S539 to region STR nr 539 na chromosomie 16). Źródło: NIST, domena publiczna.

Metody analizy STR

Sekwencje STR można łatwo analizować za pomocą łańcuchowej reakcji polimerazy (PCR, pisał o tym Piotr Gąsiorowski). Przypuśćmy, że analizujemy STR numer DS7820, który może zawierać od 4 do 15 powtórzeń. Każdy z nas ma dwa allele takiego STR, odziedziczone po każdym z rodziców. Przypuśćmy, że w naszym przypadku powtórzeń jest 4 i 8,  więc po reakcji PCR otrzymamy dwa prążki, odpowiadające 4 i 8 powtórzeniom. Kto inny może mieć np. 5 i 11 powtórzeń, a jeszcze kto inny 6 i 6 (ponieważ oba allele mają 6 powtórzeń) (Ryc. 3).

Ryc. 3. Analiza krótkich powtórzonych fragmentów (STR) za pomocą PCR. Źródło:  Sitnik R. i współpr., Einstein 2006, 4: 127-131. Licencja CC BY 4.0.

Amelogenina mówi nam o płci

Ciekawostką jest gen AMEL, którego polimorfizm wykorzystuje się do określania płci. Gen ten koduje białko o nazwie amelogenina, która odgrywa ważną rolę w syntezie szkliwa zębów. Białko to (wraz z innymi białkami tej rodziny) tworzy nanocząstki zawierające hydroksyapatyt (Ca5(PO4)3(OH)), co powoduje inicjację i wzrost kryształów hydroksyapatytów w czasie mineralizacji szkliwa.

Człowiek ma dwie kopie genu AMEL zlokalizowane na chromosomach X i Y. Te dwie formy genu noszą nazwę odpowiednio AMELX i AMELY. Sekwencje obu genów są bardzo podobne, ale pierwszy intron (czyli ta część genu, która nie koduje białka) w genie AMELX (chromosom X) jest o 6 par zasad krótszy, niż pierwszy intron genu AMELY. Kobiety mają dwa chromosomy X, a mężczyźni jeden chromosom X i jeden chromosom Y. Jeżeli zrobimy reakcję PCR pierwszego intronu genu AMEL, to w przypadku mężczyzny otrzymamy dwa prążki (jeden krótszy o 6 par zasad), a w przypadku kobiety będzie jeden (dłuższy) prążek.

Obecność mutacji w genie AMEL powoduje jednak, że metoda ta nie określa płci ze 100% dokładnością. Zdarzają się mężczyźni z delecją fragmentów pierwszego intronu, co powoduje, że reakcja PCR pokazuje tylko produkt genu z chromosomu X. Dlatego w niejednoznacznych przypadkach stosuje się dodatkowo analizę genu SRY, który koduje białko TDF (testis-determining factor). Jest ono czynnikiem transkrypcyjnym odpowiadającym za powstawanie jąder w okresie życia płodowego. Gen SRY znajduje się na chromosomie Y, który jest obecny tylko u mężczyzn.

Statystyka

Jeżeli uda się określić STR w13 loci, to prawdopodobieństwo znalezienia niespokrewnionej osobie o takim samym układzie STR wynosi 1 na bilion, czyli 10-12. Na świecie żyje ok. 8 miliardów ludzi, czyli 8 x 109. Ziemia musiałoby liczyć 100 razy więcej ludzi, żeby można było natrafić na obcą osobę z takim samym układem STR.

Jeżeli DNA jest dobrze zachowane, to udaje się określić wszystkie STR z „podstawowego” zestawu. Jeżeli DNA jest zdegradowane, to można zastosować inne, dodatkowe STR. Wtedy wszystko zależy od tego, czy w bazie danych jest odpowiednie DNA (chyba, że mamy podejrzanego) (Ryc. 4).

Ryc. 4. Analiza STR z DNA znalezionego na miejscu przestępstwa (włamanie). U podejrzanego 1 tylko jeden STR odpowiada śladowi z miejscu przestępstwa, u podejrzanego 2 wszystkie. Wniosek: to podejrzany 2 jest sprawcą. Źródło: El-Alfy SH i współpr., Eur. J. Gen. Eng. Biotechnol. 2012, 10: 101-112. Licencja CC BY 3.0.

Problemy etyczne i prawne

Pobieranie i przechowywanie próbek DNA stanowi problem etyczny i prawny. Jeżeli czyjś profil DNA jest w bazie danych, to może być sprawdzony w wielu sprawach karnych. Czy jeżeli ktoś został aresztowany za jakiekolwiek wykroczenie, to jego próbka DNA może być dowodem w innej sprawie?

Sprawa S and Marper v Zjednoczone Królestwo

Michael Marper i osoba określana jako Mr. S zostali aresztowani w 2001 r. w Sheffield (Wielka Brytania) za usiłowanie napadu rabunkowego. Zgodnie z prawem Wielkiej Brytanii, pobrano od nich próbki DNA. Uwolniono ich z zarzutów, ale próbki DNA pozostały w bazie danych. Michael Marper i Mr S zwrócili się do sądu o zniszczenie próbek, argumentując, że nie zostali oskarżeni o żadne przestępstwo, są niewinni, a więc ich DNA nie powinno się znajdować w bazie danych razem z DNA przestępców . Kiedy sąd nie przychylił się do ich prośby, odwołali się do Europejskiego Trybunału Praw Człowieka w Strasburgu. Ten w 2008 r jednogłośnie orzekł (orzeczenie ECHR 1581), że pobieranie próbek DNA od osób, które nie są formalnie oskarżone, narusza Artykuł 8 Europejskiej Konwencji Praw Człowieka (o poszanowaniu prawa do życia prywatnego i rodzinnego) i nakazał zniszczenie próbek, a także wypłatę 42 000 Euro odszkodowania. W odpowiedzi brytyjskie Ministerstwo Spraw Wewnętrznych zaproponowało, żeby pobierać próbki DNA od wszystkich aresztowanych, ale przechowywać je tylko w przypadku skazania (pozostałe mają być niszczone). W 2012 r. Izba Gmin przegłosowała Ustawę o Ochronie Wolności (Protection of Freedoms Act of 2012), zgodnie z którą próbki DNA pobrane od osób aresztowanych mają być niszczone w przypadku uniewinnienia.

Sprawa Maryland v King

Alonzo King został aresztowany w Salisbury, Maryland, w 2009 r. za grożenie pistoletem grupie osób. Zgodnie z prawem stanu Maryland (DNA Collection Act), pobrano od niego próbkę DNA. Analiza wykazała, że taki sam profil DNA miał nieustalony sprawca gwałtu w 2003 r. Alonzo King został oskarżony o gwałt i skazany na dożywotnie więzienie. Odwołał się jednak od wyroku, argumentując, że DNA pobrane w jednej sprawie nie może być dowodem w innej. Narusza to Czwartą Poprawkę do Konstytucji Stanów Zjednoczonych, która chroni obywateli przed „bezpodstawnymi przeszukaniami i zatrzymaniami” (unreasonable searches and seizures). Po licznych odwołaniach, w 2013 r. Sąd Najwyższy Stanów Zjednoczonych wydał orzeczenie w tej sprawie (Maryland v King, 569 U.S. 435, 2013). Większością 5:4 orzekł, że stan Maryland miał prawo pobrać próbkę DNA, i że ta próbka mogła służyć jako dowód w innej sprawie. Sędzia Joseph Kennedy napisał opinię większości, argumentując, że pobranie DNA nie narusza Czwartej Poprawki, bo służy bezpieczeństwu stanu Maryland, i jest w zasadzie rozwinięciem analizy odcisków palców, którą stosuje się od lat. Sędzia Antonin Scalia w zdaniu odrębnym napisał, że Czwarta Poprawka wyraźnie zabrania policji przeszukiwania podejrzanego w celu znalezienia dowodów na przestępstwo inne niż te, za które został aresztowany. Na tej zasadzie policja mogłaby przeszukiwać domy osób zatrzymanych za przekroczenie prędkości w poszukiwaniu dowodów na handel narkotykami.

Zasady pobierania próbek DNA w USA są różne: w 17 stanach DNA pobiera się od każdego aresztowanego, w 13 od aresztowanych tylko za niektóre przestępstwa, a w 17 wyłącznie od skazanych. Zgodnie z orzeczeniem Sądu Najwyższego, wszystkie te próbki mogą służyć za dowody w każdej sprawie karnej.

Polskie prawo karne

W Polsce profile DNA mogą służyć jako dowody w sprawach karnych i cywilnych. Baza danych DNA jest prowadzona przez Komendanta Głównego Policji. Próbki DNA pobiera się od osób oskarżonych (Art. 74 Kodeksu Postępowania Karnego). Próbki DNA przechowywane są przez 20 lat. W przypadku niektórych przestępstw, próbki DNA przechowuje się przez 35 lat. Należą do nich: przestępstwa przeciw pokojowi i ludzkości, Rzeczpospolitej, obronności, życiu i zdrowiu, bezpieczeństwu powszechnemu (Rozdziały XVI-XX Kodeksu Karnego), przestępstwa przeciw wolności seksualnej i obyczajowości (Rozdział XXV Kodeksu Karnego), przestępstwa przeciw mieniu (Rozdział XXXV Kodeksu Karnego), a także, co ciekawe, kierowanie pojazdem mechanicznym bez odpowiednich uprawnień (Art. 94 § 1 Kodeksu Karnego).

Czy większa liczba profili DNA to większa szansa znalezienia sprawcy?

Podejście do zbierania profili DNA jest różne w różnych krajach. Można je podzielić na restrykcyjne i ekspansywne. Restrykcyjne polega na pobieraniu DNA tylko od podejrzanych o poważne przestępstwa, jak morderstwo czy gwałt. Do krajów tych należą m.in. Belgia, Niemcy, Hiszpania i Polska. Ekspansywne podejście polega na pobieraniu DNA od wszystkich podejrzanych, nawet zatrzymanych za niegroźne przestępstwa. Takie kraje to cytowana Wielka Brytania, a także Finlandia, Litwa, Łotwa i Słowacja. Dlatego bazy DNA w krajach „restrykcyjnych” zawierają mało profili w stosunku do całej populacji (od 0,06% w Rumunii do 0,91%% w Niemczech).  Bazy w krajach „ekspansywnych” są większe: od 1,87% w Austrii do 10,3% w Anglii i Walii (w Szkocji 4,7%). Niekoniecznie przekłada się to jednak na sprawność systemu, który można określić jako stosunek liczby śladów, których pochodzenie udało się określić, do liczby profili DNA w bazie danych. W „restrykcyjnych” krajach sprawność wynosi od 0,001% w Rumunii do 0,3% w Szwecji. W „ekspansywnych” krajach jest to 0,02% w Łotwie i 0,31% w Wielkiej Brytanii. W Polsce w r. 2016 baza profili DNA zawierała dane 28 376 osób (0,07% obywateli). Liczba śladów wynosiła 2483, i w bazie znaleziono 147 sprawców, co oznacza, że sprawność wynosiła 0,0056%.

Przyszłość

Jak widać, profile DNA mogą służyć do ustalenia sprawcy przestępstwa, ale szanse sukcesu nie są duże. Wynika to z niewielkiej liczby profili DNA w bazach danych. Jeżeli sprawca nie popełnił uprzednio żadnego przestępstwa, a w każdym razie nie był aresztowany, to raczej nie figuruje w bazie danych i trudno będzie go namierzyć. I tu wchodzi w grę określanie fenotypu na podstawie DNA (forensic DNA phenotyping), które (kto wie?) stanowi przyszłość kryminalistyki. Czy mając próbkę DNA, możemy przewidzieć wygląd danej osoby? O tym napiszę w następnym odcinku.

Literatura dodatkowa

Regiony minisatelitarne w ludzkim genomie

https://www.nature.com/articles/314067a0

Zastosowanie regionów minisatelitarnych w kryminalistyce

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444828/

Bazy profili genetycznych w różnych krajach europejskich

https://lsspjournal.biomedcentral.com/articles/10.1186/2195-7819-9-12