Wniebowzięci – historia ssaków latających. Część 2: Nietoperze, czyli lotnictwo dla zaawansowanych

Inne wpisy w tej serii
Część 1: Spadochroniarze i lotniarze
Część 3: Planeta nietoperzy
Część 4: Zdrów jak nietoperz
Część 5: Nietoperze i język [w przygotowaniu]

Wstęp

Loty ślizgowe ewolucja „wynalazła” wielokrotnie. Wśród kręgowców, oprócz ssaków wymienionych w części 1, uprawia je kilkadziesiąt gatunków ryb, kilkaset gatunków płazów bezogonowych („żab latających”), wiele jaszczurek, spośród których najbardziej znany jest „smok latający” (rodzaj Draco z ponad 40 gatunkami), a nawet węże z rodzaju Chrysopelea (5 gatunków), zwane po polsku wężolotami. Choć nie wytworzyły one specjalnych błon lotnych, potrafią dosłownie pełznąć w powietrzu na nieprawdopodobną odległość do 100 m. Również wiele gadów kopalnych z grup wymarłych bezpotomnie należało do klubu „lotniarzy”.

Co innego jednak opadać lotem ślizgowym, a co innego latać aktywnie, używając skrzydeł napędzanych mięśniami. Tę sztukę opanowały tylko trzy grupy kręgowców: pterozaury (Pterosauria), dinozaury należące do kladu Paraves (którego współczesnymi przedstawicielami są ptaki) oraz nietoperze (Chiroptera). Wczesna ewolucja Paraves była mozaikowa. Dinozaury eksperymentowały z rozmaitymi kombinacjami cech i budową skrzydeł. Opadały lotem ślizgowym albo podfruwały, ociężale trzepocąc, aż w jednej z ich linii rodowych nastąpił przełom umożliwiający prawdziwie ptasie manewry w powietrzu. Właściwy, w pełni sprawny lot wyewoluował u dinozaurów raz, a w każdym razie utrwalił się tylko w jednej linii rodowej – u przodków ptaków z kladu Avialae, ok. 160 mln lat temu.

Ewolucja ptaków i ich najbliższych kuzynów jest znakomicie udokumentowana przez dane paleontologiczne, natomiast pochodzenie pterozaurów pozostaje w dużym stopniu zagadkowe. Pojawiają się one w zapisie kopalnym dość nagle około 220 mln lat temu. Dopiero w ostatnich latach zidentyfikowano ich najbliższych krewnych, archozaury z rodziny Lagerpetidae, ale nadal nie znamy form pośrednich, nie w pełni latających. Podobnie wygląda sytuacja w przypadku nietoperzy – jedynych ssaków, które latają o własnych siłach.

Ryc. 1.

Dziwni kuzyni

Rozumując naiwnie, można by było oczekiwać, że skoro lot ślizgowy, jako łatwiejszy, choć niedoskonały sposób na przemieszczanie się w powietrzu, zapewne poprzedzał lot aktywny, to przodków nietoperzy należałoby szukać w drzewie rodowym ssaków blisko którejś z licznych grup zdolnych do szybowania. Tak jednak nie jest. Odłam ssaków, do których należą nietoperze, jest niesłychanie różnorodny, ale jednej rzeczy w nim brakuje: innych gatunków zdolnych do jakiejkolwiek formy lotu, choćby niezdarnego. Wszyscy znani lotniarze łożyskowi należą do kladu o niezręcznie długiej nazwie Euarchontoglires (obejmującego gryzonie, zajęczaki, wiewióreczniki, latawce i naczelne). Był on jedną z dwu gałęzi, na które rozszczepił się klad Boreoeutheria, czyli łożyskowce kontynentów północnych. Druga gałąź nosi nazwę Laurasiatheria, trochę mylącą, bo Euarchontoglires też pochodzą z dawnego superkontynentu Laurazji, czyli z półkuli północnej. Pomińmy teraz wszystkie inne grupy ssaków i skupmy się na laurazjaterach.

Jest to grupa niesłychanie różnorodna. Widzimy w niej zarówno najmniejsze znane ssaki o długości kilku centymetrów i masie poniżej dwóch gramów, jak i trzydziestometrowe olbrzymy oceaniczne o masie dwustu ton. Obok skrajnie wyspecjalizowanych trawożerców – hiperdrapieżniki. Jedne skaczą, inne biegają z wielką prędkością. W sumie laurazjatery obejmują prawie 2,5 tys. opisanych dotąd gatunków – i 60% z nich aktywnie lata. Nietoperze zajmują bowiem drugie miejsce w rankingu najbogatszych w gatunki rzędów ssaków (1466), zaraz po gryzoniach (2680). Te liczby reprezentują obecny stan wiedzy, ale wkrótce nie będą aktualne, bo nowe gatunki zarówno gryzoni, jak i nietoperzy, są nadal odkrywane.

Podział łożyskowców na jednostki powyżej rangi rzędów i stosunki pokrewieństwa wewnątrz tych grup ustalono z grubsza dzięki metodom filogenetyki molekularnej. Możemy zatem spróbować odpowiedzieć na następujące pytanie: – Który z pozostałych rzędów laurazjaterów jest najbliżej spokrewniony z nietoperzami? Łatwiej powiedzieć, który nie jest: ten, który przypomina nietoperze najbardziej, bo także obejmuje ssaki niewielkie, najczęściej odżywiające się drobnymi bezkręgowcami. Mam na myśli owadożery (Eulipotyphla), czyli ryjówki, krety, jeże i almiki. Oddzieliły się one najwcześniej od innych laurazjaterów i zachowały wiele cech prymitywnych, odziedziczonych po mezozoicznych przodkach, a przynajmniej tak sobie wyobrażamy – niekoniecznie słusznie, bo nie każdy wczesny ssak przypominał ryjówkę.

Pozostałe laurazjatery (w tym nietoperze) tworzą grupę nazwaną Scrotifera. Oznacza to dosłownie ‘noszące mosznę’. Nazwa jest zwodnicza, bo samce Euarchontoglires (z ludźmi włącznie) także w znacznej większości noszą swoje jądra w dobrze rozwiniętej mosznie na zewnątrz jamy ciała (wyjątkiem są amerykańskie gryzonie z grupy Caviomorpha). Jest to cecha, która prawdopodobnie istniała u wspólnego przodka Boreoeutheria, natomiast nie występuje u pozostałych łożyskowców – afroterów i szczerbaków. Owadożery nie mają moszny, bo zanikła ona w ich linii rodowej, podobnie jak u niektórych Scrotifera: nie mają jej łuskowce, walenie, nosorożce i tapiry, a także foki i morsy, ale spokrewnione z nimi blisko uchatki zachowały sobie sakiewkę na jądra. Co do nietoperzy, mosznę ma większość z nich, choć nie wszystkie. Dlatego jeszcze raz przypominam, że nazwa to tylko etykietka rozpoznawcza przyklejona dla wygody i nie trzeba z niej wyciągać daleko idących wniosków.

Prapoczątki

Wśród Scrotifera nietoperze zajmują pozycję bazalną, czyli odgałęziają się u samej podstawy drzewa rodowego. Pozostałe rzędy tej grupy objęte są wspólną nazwą Ferungulata, co można przetłumaczyć jako ‘drapieżnokopytne’. Należą do nich bowiem ssaki kopytne, których dzisiejsi przedstawiciele tworzą dwa rzędy: nieparzystokopytne i parzystokopytne (dawniej tych rzędów było o wiele więcej) oraz drapieżne (Carnivora), a ponadto jeszcze mniej znane łuskowce (Pholidota). Do parzystokopytnych od niedawna włączamy walenie, które żadnych kopyt nie mają, ale wywodzą się od przodków bliskich hipopotamom i przeżuwaczom. Znów widzimy, że to nie nadane przez ludzi nazwy świadczą o pokrewieństwach i przynależności systematycznej. Notabene nie wszystkie drapieżne są drapieżnikami (np. panda wielka jest wegetarianką). Podsumowując: koń, delfin, wielbłąd, łuskowiec, tygrys albo mors są bliższymi krewnymi nietoperzy niż ryjówka, choć nietoperz (z punktu widzenia laika) wygląda jak ryjówka, której doklejono skrzydła.

Podobieństwo wynika stąd, że nietoperze (tak jak owadożery) oddzieliły się wcześnie od wspólnego pnia laurazjaterów, a ich ewolucja nie wiązała się np. z tendencją do gigantyzmu. Fizyka i biomechanika uczą, że łatwiej jest latać, jeśli jest się zwierzęciem niedużym, ponieważ przy rosnących rozmiarach masa ciała rośnie szybciej niż powierzchnia dająca się wykorzystać do wytwarzania siły nośnej. Dlatego ptaki, choć nigdy nie przestały być dinozaurami, nie osiągają gabarytów tyranozaura. Masywna budowa ciała (jak u strusi i ich kuzynów) wymagała rezygnacji z latania. Największe pterozaury i ptaki latające osiągnęły maksymalną możliwą rozpiętość skrzydeł kosztem rozlicznych oszczędności anatomicznych nie zawsze osiągalnych dla ssaków. Wspólny przodek laurazjaterów (żyjący, jak można sądzić, w późnej kredzie) był niedużą kulką futra z ogonkiem i z łapkami wyposażonymi w pazury. Nawet kiedy rozeszły się drogi owadożerów i Scrotifera, a następnie te ostatnie podzieliły się na przodków nietoperzy oraz Ferungulata, wszystkie one nadal były do siebie powierzchownie podobne.

Wymarcie wielkich dinozaurów 66 mln lat temu sprawiło, że ssaki łożyskowe zajęły mnóstwo opuszczonych nisz ekologicznych i dały początek imponującym radiacjom adaptacyjnym na lądach i w morzach, dzieląc się na tysiące gatunków coraz bardziej różnorodnych. Ale wcześni przedstawiciele kopytnych i drapieżnych wciąż niezbyt się od siebie różnili. Paleontolodzy starannie przyglądają się anatomii kończyn lub szczegółom uzębienia, żeby zidentyfikować charakterystyczne cechy poszczególnych linii rodowych, ale Bogiem a prawdą i oni często miewają wątpliwości. Szczególnie interpretacja skamieniałości ssaków z paleocenu i kredy bywa trudna i kontrowersyjna.

Tu pojawia się pewien problem dotyczący nietoperzy. Rozpoznawalni przedstawiciele linii ewolucyjnych kopytnych i drapieżnych, a nawet łuskowców, znani są w stanie kopalnym od wczesnego paleocenu (ponad 60 mln lat temu). Datowania molekularne konsekwentnie wskazują, że Ferungulata miały ostatniego wspólnego przodka w kredzie, ponad 70 mln lat temu. Oczywiście ostatni wspólny przodek Scrotifera musiał żyć jeszcze dawniej, zapewne ok. 80 mln lat temu. Wówczas linia rodowa przodków nietoperzy oddzieliła się od przodków krów, koni czy kotów. Ale nie mamy pojęcia, co się działo z protoplastami nietoperzy aż po eocen (czyli przez prawie 30 mln lat) ani kiedy nietoperze nauczyły się latać. Zanim zaczniemy spekulować na ten temat, sprawdźmy, na czym stoimy.

Ryc. 2.

Świt nietoperzy

Najstarsze znane nietoperze są reprezentowane przez pojedynczy ząb trzonowy ze stanowiska w Portugalii datowanego na przełom paleocenu i eocenu (ok. 56 mln lat temu) oraz kilka zębów z prowincji Xinjiang (Chiny) z tego samego okresu, opisanych w 2021 r. Nie da się na ich podstawie odtworzyć wyglądu właścicieli. Jednak biorąc pod uwagę, jak trudne do zinterpretowania są szczątki małych ssaków z wczesnych etapów ich historii i o jak delikatnych zwierzętach mówimy1, aż dziw, że bardzo wczesne skamieniałości nietoperzy bywają wyjątkowo dobrej jakości. W skałach formacji Green River w południowo-zachodnim Wyoming (USA) znaleziono w ciągu ostatniego półwiecza cały szereg pięknych okazów, w tym kompletne szkielety kilku gatunków z rodzajów Icaronycteris i Onychonycteris, pochodzące z wczesnego eocenu (52,5 mln lat temu). Niewiele młodsze (50 mln lat temu) są szczątki co najmniej 23 osobników z gatunku nazwanego Vielasia sigei, opisane w 2023 r. Znalesiono je w południowo-zachodniej Francji, w osadach wypełniających dawną jaskinię krasową.2 Dziesiątki minimalnie późniejszych, znakomicie zachowanych skamieniałości nietoperzy z rodzajów Archaeonycteris, Palaeochiropteryx i Hassianycteris znane są z łupków bitumicznych sławnej „kopalni skamieniałości” Messel w Hesji (Niemcy). Zanim wczesny eocen przeszedł w środkowy, nietoperze pojawiły się w Indiach, Afryce, Australii i Ameryce Południowej.

Okaz australijski, Australonycteris clarkae, znaleziono na stanowisku w Murgon w Queenslandzie. Wiek tamtejszych skamieniałości nie jest do końca pewny, ale zwykle datuje się je na wczesny eocen (ok. 54,6 mln lat temu). W owym czasie Australia jeszcze nie całkiem oderwała się od Antarktydy. Australonycteris należał do tzw. fauny tingamarrańskiej wraz z najstarszymi znanymi przedstawicielami torbaczy australijskich. Jak wiemy, torbacze przybyły do Australii z Ameryki Południowej przez Antarktydę. Jaką drogą dotarł do Australii nietoperz – na razie nie wiadomo. Skamieniałość jest niekompletna, ale wykazuje bliskie pokrewieństwo z eoceńskimi gatunkami z Europy i Indii (rodzina Archaeonycteridae). Jeśli datowanie fauny tingamarrańskiej jest poprawne, wiek australonykterysa jest niemal rekordowy.

Z Ameryki Południowej (argentyńska prowincja Chubut w Patagonii) znamy kilka zębów nietoperzy sprzed 52 mln lat. Nie znaleziono dotąd szczątków nietoperzy w Antarktydzie, ale jest wysoce prawdopodobne, że były obecne również tam. Krótko mówiąc, 56–52 mln lat temu, w cieplarnianym świecie eoceńskiego optimum klimatycznego, nietoperze skolonizowały nagle wszystkie kontynenty.

Odwieczne trzepotanie

Nietoperze znane z początku eocenu nie należą do żadnej z grup żyjących obecnie. Oczywiście gdzieś wśród nich musiał się ukrywać przodek w prostej linii nietoperzy współczesnych, ale te gatunki, które dotąd opisano, zalicza się do kilku rodzin stanowiących boczne, bezpotomnie wymarłe odnogi drzewa rodowego. Co jednak istotne, nie różniły się one znacząco od nietoperzy, jakie znamy. Miały takie same skrzydła, których podstawową częścią była dłoń o krótkim kciuku i czterech silnie wydłużonych palcach, podtrzymujących patagium (błonę lotną). Od ostatniego palca brzeg błony ciągnął się do kostek tylnych kończyn. Dodatkowa błona, propatagium, wypełniała zgięcie łokcia, między szyją a podstawą kciuka. U niektórych gatunków rozwinęło się także uropatagium między nogami a ogonem, o brzegu wzmocnionym przez specjalną ostrogę chrzęstną biegnącą od pięty w kierunku ogona. Niewątpliwie te wczesne nietoperze latały już sprawnie, o czym świadczy ich kosmopolityczny zasięg występowania.

Wśród szczątków francuskich nietoperzy jaskiniowych zachowała się kompletna, niezniekształcona czaszka. W jej budowie wewnętrznej widać wyraźnie przystosowania do echolokacji za pomocą ultradźwięków. Wydaje się, że niemal wszystkie wczesnoeoceńskie nietoperze znały już echolokację. Wyjątkiem jest amerykański Onychonycteris finneyi (i zapewne gatunki blisko z nim spokrewnione). Wyróżnia się on także innymi cechami, na przykład obecnością pazurów na wszystkich pięciu palcach dłoni3 i mniejszą dysproporcją długości kończyn przednich i tylnych. Można więc prowizorycznie założyć, że zdolność do lotu wyewoluowała wśród nietoperzy raz, być może pod koniec paleocenu, a po oddzieleniu się rodziny Onychonycteridae u pozostałych nietoperzy rozwinęła się zaawansowana echolokacja.4 Umożliwiała im ona nocne loty łowieckie i zasiedlanie jaskiń.

U niektórych nietoperzy z Messel fosylizacji uległa zawartość żołądka. Zawierał on ćmy, chruściki lub chrząszcze (w zależności od preferencji danego gatunku); mamy zatem, oprócz budowy zębów, także bezpośrednie dowody na to, że nietoperze te polowały na owady. U niektórych okazów zachowały się tak niewiarygodne szczegóły jak kształt uszu i melanosomy (ciałka pigmentowe) zawarte we włosach. Dzięki ich zbadaniu wiadomo, że Palaeochiropteryx i Hassianycteris z Messel miały futerko barwy brązowej.

Ryc. 3.

Anatomia skrzydeł zdradza, że podobnie jak dzisiejsze nietoperze, eoceńscy przedstawiciele rzędu byli aktywnymi lotnikami z własnym napędem, czyli latali, trzepocąc skrzydłami. Dziś mało który nietoperz uprawia lot ślizgowy (choć patrz przypis 5). Także Onychonycteris z pewnością latał aktywnie: świadczą o tym choćby ślady silnych mięśni skrzydeł. Jednak raczej nie był zdolny do długotrwałego wymachiwania skrzydłami i sprawnego manewrowania. Zachowanie kompletu pazurów sugeruje, że był mieszkańcem koron drzew i zwieszał się z gałęzi, trzymając się ich kilkoma palcami każdej z kończyn, a z drzewa na drzewo przelatywał, nie tylko trzepocąc, ale także szybując.5

Ostatni wspólny przodek nietoperzy dzisiejszych (czyli protoplasta grupy koronnej) musiał żyć co najmniej ok. 50 mln lat temu, ale linia współczesna pozostawała z początku w cieniu swoich kuzynów. Przedstawiciele niektórych współcześnie istniejących rodzin nietoperzy znani są ze środkowego eocenu – głównie ze stanowisk europejskich, ale to dlatego, że są one szczególnie starannie zbadane. Pod koniec eocenu przodkowie nietoperzy współczesnych już dominowali, wypierając grupy bardziej archaiczne. Niebawem nastąpiła wręcz wybuchowa radiacja przystosowawcza, której efektem jest istnienie w naszych czasach 21 rodzin i niemal półtora tysiąca gatunków nietoperzy. Podobnie jak gryzonie, są one obecnie grupą kwitnącą.

Gdzie szukać przodków?

Powróćmy teraz do pytania, gdzie były nietoperze, kiedy ich nie było (w zapisie kopalnym). Wyobraźmy sobie nieznanego dotąd pranietoperza, który tak się ma do gatunków znanych, jak archeopteryks do ptaków.5 Właściwie wiemy, jak powinien wyglądać i jaki tryb życia powinien prowadzić. Poszukiwanym typem ssaka jest małe, owadożerne lub być może wszystkożerne zwierzę żyjące w koronach drzew i prawdopodobnie wyposażone w typowe patagium. Rysopisem – choć niekoniecznie dietą – mogło przypominać latawca lub polatuchę, albo na przykład plezjadapidy (prymitywne naczelne z paleocenu i eocenu). Pokrewieństwo z nietoperzami zdradziłaby najpewniej charakterystyczna budowa zębów.

Warto zauważyć, że nadrzewność tylko wyjątkowo występuje u owadożerów. Niektóre ryjówki wspinają się na drzewa, ale typowe owadożery to małe drapieżniki buszujące na dnie lasu lub ryjące w ziemi. Natomiast prymitywne drapieżne i kopytne dość często bywały nadrzewne. Na ziemię sprowadził je wzrost masy ciała. Także większość współczesnych gatunków łuskowców żyje w wysokich partiach drzew. Może więc podział na Eulipotyphla i Scrotifera wynikał początkowo z różnego trybu życia? Jedna z dwóch siostrzanych linii kredowych ssaków została na ziemi, podczas gdy druga wspinała się na drzewa – a może także na strome skały, szukając schronienia w szczelinach i jaskiniach.

Jak już wiemy, patagium pojawiło się w ewolucji ssaków wielokrotnie, bo jest z czego je zrobić: luźna, rozciągliwa skóra między kończynami po bokach ciała występuje często, podobnie jak fałdy skóry między palcami. Wydłużenie kończyn i palców (przy zachowaniu ich liczby, a także liczby paliczków) wymaga tylko zmian w regulacji ekspresji genów, które każdy kręgowiec i tak już posiada. Proces taki może nastąpić szybko w ewolucyjnej skali czasu pod warunkiem, że istnieje silny nacisk selekcyjny faworyzujący „długopalcych”. Raczej nie chodziło jedynie o zwiększenie powierzchni patagium, ale być może np. o pewniejszy chwyt podczas akrobatycznej wspinaczki (pamiętajmy, że pierwotnie każdy palec dłoni nietoperza zakończony był pazurem). Dlaczego pranietoperze zaczęły energicznie trzepotać przednimi kończynami, zamiast zadowalać się lotem ślizgowym jak wiele innych ssaków? Być może dowiemy się, jeśli znajdziemy skamieniałe szczątki gatunków ilustrujących stadia pośrednie.

Nietoperze są zatem wyjątkiem od reguły mówiącej, że ssaki nie latają aktywnie. Ale jak zobaczymy, są także wyjątkiem od wielu innych reguł.

Przypisy

1) Szanse na fosylizację nietoperzy – zwierząt o średniej masie ciała wynoszącej kilkanaście gramów – należą do najniższych w porównaniu z innymi rzędami ssaków. Paleontolodzy szacują, że w stanie kopalnym mogło się zachować ok. 20% gatunków nietoperzy, jakie kiedykolwiek żyły na Ziemi. Oczywiście nie wszystkie z nich już odkryto – ostatnio prawe każdy rok przynosi w tej dziedzinie coś interesującego.
2) Dowodzą one, że już wtedy duże kolonie nietoperzy gnieździły się w jaskiniach.
3) U współczesnych nietoperzy (a także większość nietoperzy eoceńskich) duży, haczykowaty pazur występuje na kciuku. Tylko u niektórych również drugi palec posiada pazur. Pozostałe palce są ich całkowicie pozbawione.
4) Jakaś mniej precyzyjna forma echolokacji mogła istnieć wcześniej, także u wspólnego przodka wszystkich laurazjaterów. Niektóre owadożery – almiki oraz ryjówki z rodzajów Blarina i Sorex, w tym nasza swojska ryjówka aksamitna (Sorex araneus) – orientują się w ciemnościach za pomocą echolokacji ultradźwiękowej.
5) Wśród dzisiejszych nietoperzy taki sposób lokomocji występuje u brodawkonosów (Rhinopomatidae), które na przemian trzepocą i szybują (przez co łatwo je pomylić w locie z ptakami). Nie są wytrwałymi lotnikami i najchętniej polują na dość nisko latające chrząszcze, a także sprawnie biegają po ziemi. Mają stosunkowo krótkie palce przednich kończyn i wyjątkowo długi, swobodny ogon (uropatagium łączące go z tylnymi kończynami sięga tylko do jego nasady). Są to jednak w ich przypadku wyniki wtórnych przystosowań, a nie cechy prymitywne, odziedziczone po dalekich przodkach.
6) Może lepszą analogią byliby dalsi krewni ptaków, np. czteroskrzydły Anchiornis albo Yi z błoniastymi skrzydłami jak u nietoperza (choć jako dodatkowy wspornik patagium służył mu nie palec, ale długi wyrostek kostny sterczący z nadgarstka, podobny do ostrogi chrzęstnej, jaką mają polatuchy). Na tych przykładach widać, jak dinozaury ewoluowały ku lataniu różnymi alternatywnymi drogami.

Opis ilustracji

Ryc. 1. Budowa skrzydła nietoperza i poszczególne części patagium. Na dole: porównanie rozwoju embrionalnego kończyny przedniej nietoperza i myszy. Źródło: Sadier et al. 2020 (licencja CC BY 4.0).
Ryc. 2. Icaronycteris gunnelli, jeden z najstarszych nietoperzy zachowanych w postaci kompletnego szkieletu w przybrzeżnych osadach eoceńskiego jeziora sprzed 52,5 mln lat (formacja Green River, Wyoming). Jest to holotyp, czyli okaz, na którego podstawie opisano gatunek. Nie trzeba być chiropterologiem (nietoperzoznawcą) ani badać budowy zębów, żeby rozpoznać tu szkielet nietoperza. Źródło: Rietbergen et al. 2023 (domena publiczna).
Ryc. 3. Hassianycteris messelensis z łupków bitumicznych w Messel (48 mln lat temu). Jeden z pierwszych kopalnych nietoperzy, którego umaszczenie udało się zreknstruować dzięki sfosylizowanym melanosomom. Zachowała się także treść żołądka z fragmentami pancerzyków chrząszczy i łuskami ze skrzydeł ciem. Hessisches Landesmuseum, Darmstadt. Foto: PalaeoScene (fair use).

Lektura dodatkowa

  • Eoceńskie stanowisko Murgon, Queensland (Australia). Australian Museum.
  • Eoceńskie skamieniałości z Messel, stanowiska z listy Dziedzictwa Światowego UNESCO. Google Arts & Culture.
  • Skamieniałości, których niestety na razie nie mamy, a bardzo chcielibyśmy mieć. Darren Naish, Tetrapod Zoology.
  • Yi qi, dinozaur przypominający polatuchy lub nietoperze. Nick Garland, Julio Lacerda, Earth Archives.

Płaskowce, czyli zalety prostoty. Autor: Łukasz Sobala.

Autorem poniższego wpisu jest Łukasz Sobala, mój kolega z Instytutu Immunologii i Terapii Doświadczalnej PAN, glikobiolog (specjalista od enzymów przenoszących cukry, czyli glikozylotransferaz) i badacz wczesnej ewolucji zwierząt. Możliwe, że dołączy na stałe do grona autorów. Dziś gościnnie u mnie.

Płaskowce pod mikroskopem

Jak wyglądała ewolucja zwierząt? Było już na blogu kilka artykułów na ten temat. Chciałbym się odnieść  do drzewa z niedawnego wpisu, które pokazuje najnowsze spojrzenie na wzajemne relacje pokrewieństwa główych kladów zwierząt: żebropławów, gąbek, parzydełkowców, płaskowców oraz zwierząt dwubocznie symetrycznych. Gąbki są powszechnie znane, parzydełkowce także. Żebropławy zyskały ostatnio nową sławę jako najdalsi żyjący krewni wszystkich innych zwierząt. Dwubocznie symetryczni są ludzie, a także np. ryby i owady. Ale płaskowce (Placozoa)? Co to właściwie jest? Zacznijmy od zdjęcia poglądowego (Ryc. 1).

Ryc. 1. Płaskowiec Trichoplax sp. H2 wśród okrzemków, bakterii i innych organizmów. Zdjęcie: Łukasz Sobala.

Chociaż płaskowiec swoim wyglądem przypomina nieco jednokomórkową amebę, każdy z jasnych i ciemnych punktów na zdjęciu powyżej to pojedyncza komórka (niektóre mogą być resztkami jego pożywienia). Trichoplax porusza się na tyle szybko, że można to zobaczyć gołym okiem (Ryc. 2).

Ryc. 2. Płaskowiec Trichoplax sp. H2 udający się na nowy łów. Zdjęcie: Łukasz Sobala.

Na Ryc. 2 można zaobserwować, jak morski płaskowiec Trichoplax sp. H2 opuszcza niestrawione resztki pożywienia (algi Rhodomonas salina), aby szukać nowego. Warto tutaj zaznaczyć, że wszystkie znane dziś gatunki płaskowców żyją w morzach. A jak płaskie są płaskowce? Popatrzmy na Ryc. 3.

Ryc. 3. Osobnik Trichoplax sp. H2 próbujący przedostać się na spodnią część szkiełka mikroskopu. Warto zwrócić uwagę na różne typy komórek oraz brak sieci neuronów. Zdjęcie: Łukasz Sobala.

Grubość płaskowca to ok. 25 µm (dla porównania: ludzki włos ma grubość ok. 75 µm, przy czym 1 µm to 1/1000 mm), a średnica może dochodzić do ponad 2 mm. Gdyby człowiek o wysokości 170 cm miał proporcje płaskowca, miałby średnicę 140 metrów.

Zachowanie i biologia

Płaskowce poruszają się za pomocą rzęsek, które pokrywają całe ich ciało, ale są bardziej liczne na spodniej stronie. Rzęski te mogą poruszać się w skoordynowany sposób. Można więc powiedzieć, że płaskowce “biegają” po powierzchni za pomocą tysięcy nóżek. Rozmnażają się bezpłciowo (po prostu dzieląc się na dwa potomne organizmy) lub płciowo (zostało to zaobserwowane, jednak do dziś cykl płciowy nie jest w pełni zrozumiany).

Początkowo uważano, że płaskowce mają tylko cztery typy komórek: górny i dolny nabłonek (to komórki z rzęskami), komórki gruczołowe znajdujące się w dolnym nabłonku oraz komórki włókniste (fiber cells). Jednak okazało się, że rodzajów komórek jest sześć. Zostało to  potwierdzone za pomocą nowatorskiej metody sekwencjonowania RNA z pojedynczych komórek. Dzięki tej metodzie można zidentyfikować grupy komórek, w których ekspresja genów jest na podobnym poziomie. Jeden z nowo odkrytych typów komórek jest nazywany lipofilnymi. Mają one pokaźną wakuolę wypełnioną lipidami i odpowiadają za szybkie wydzielanie enzymów trawiennych po napotkaniu potencjalnej zdobyczy.

Ostatni typ komórek to komórki peptydergiczne (“wydzielające peptydy”), których może być 5 podrodzajów. To one odpowiadają za “wydawanie poleceń” innym komórkom. Nie tworzą jednak sieci, i jak wynika z nazwy, komunikują się za pomocą wydzielanych peptydów. Co ciekawe, peptydy te są podobne do wydzielanych przez zwierzęta z układem nerwowym  (przykładem mogą być endorfiny) i można ich używać  do indukcji określonych zachowań w płaskowcach.

Interesujące u płaskowców jest także to, że nie mają układu nerwowego ani mięśni. W odróżnieniu od gąbek, które prowadzą osiadły tryb życia, płaskowce aktywnie szukają pożywienia. Jak w takim razie koordynują swoje ruchy? Wygląda na to, że z racji niewielkich rozmiarów, koordynacja może polegać na wyczuwaniu przez pojedyncze komórki tego, co robią ich sąsiedzi. Jest to zdecentralizowany układ, w którym porządek pojawia się niejako “samorzutnie”, dzięki temu że każdy jego element ma podobne zdolności. Wprowadza to jednak dość duże ograniczenie dla maksymalnych rozmiarów płaskowców, bo ruchy większych osobników są bardziej chaotyczne.

Trichoplax zyskuje towarzystwo

Pierwszy płaskowiec został opisany jako Trichoplax adhaerens w 1883 roku przez F. E. Schulze. Przez ponad sto lat od tego odkrycia płaskowce zdawały się być mało interesujące dla biologów. Dopiero w obecnym stuleciu, dzięki rozwojowi technologii sekwencjonowania, zaczęto rozpoznawać nowe gatunki. Większości płaskowców nie da się dzisiaj rozróżnić po wyglądzie: wszystkie, oprócz nieco zagadkowego gatunku Polyplacotoma mediterannea, wyglądają podobnie. Trzeci nazwany gatunek to Hoilungia hongkongensis. W przypadku innych płaskowców, których aktualnie znamy około 25, na razie używa się ponumerowanych szczepów (od H0 do H24, przy czym Polyplacotoma to H0). Podjęto także pierwsze próby stworzenia linneańskiej systematyki płaskowców, nadając poszczególnym kladom rangi rodziny, rzędu i gromady (Ryc. 4).

Ryc. 4. Początki systematyki płaskowców. Reprodukcja za: Tessler i in., 2022, licencja CC-BY-4.0.

Zagadkowa pozycja płaskowców

Pierwszy (i jak dotąd, jedyny) genom płaskowca Trichoplax adhaerens został opublikowany w 2008 roku. Pomimo nieskomplikowanej budowy, okazało się, że płaskowce mają  zróżnicowany zestaw czynników transkrypcyjnych, czyli białek odpowiadających za regulację ekspresji genów w odpowiedzi na różne bodźce. Wskazuje na potencjalnie wysoką elastyczność cyklu życia. Niestety, w genomie płaskowców zaszło zbyt dużo zmian w stosunku do innych organizmów, aby na podstawie analizy porównawczej z genomami innych zwierząt stwierdzić, jakie jest ich miejsce na zwierzęcym drzewie ewolucyjnym. Daleki dystans ewolucyjny (duża liczba mutacji) sprawił, że trudno jest “dopasować” do siebie np. sekwencje poszczególnych białek płaskowca i zwierzęcia dwubocznego. A nawet jeśli się to uda, mutacje mogły zajść już kilka razy nawet w zrekonstruowanym wspólnym przodku tych grup. Jest to sytuacja, z którą trudno sobie poradzić używanym dzisiaj modelom ewolucji, szukającym “sygnału ewolucyjnego” w zmianach w pojedynczych aminokwasach. Jeśli zaszła więcej niż jedna zmiana, sygnał taki zostaje stracony. Konserwacja niektórych fragmentów genomu wskazywała jedynie że są bliżej spokrewnione z parzydełkowcami i dwubocznymi niż z gąbkami. Oprócz tego, analizy porównawcze morfologii zwierząt wskazywały na możliwość nieco bliższego spokrewnienia płaskowców z parzydełkowcami, niż z dwubocznymi. Brakowało jednak przekonujących dowodów popierających tą hipotezę.

Przełomem była wspomniana na początku analiza makrosyntenii, czyli obecności na tym samym chromosomie genów pochodzących w prostej linii z tego samego proto-genu, wśród wielu gatunków odległych od siebie zwierząt. Oprócz tejże analizy, już w 2022 roku ta sama grupa badawcza opublikowała pracę, w której wskazywała na makrosyntenię jednego z chromosomów między płaskowcami i parzydełkowcami, która była nieobecna wśród żebropławów, gąbek ani zwierząt dwubocznych. Zapis historyczny ukryty w genomie znów pokazał swoją wartość. Pomimo ogromnej różnicy w budowie ciała – płaskie i bezneuronowe u płaskowca, trójwymiarowe i unerwione wśród parzydełkowców – wygląda na to że płaskowce są najbliżej spokrewnione z parzydełkowcami. Zwierzęta dwubocznie symetryczne są potomkami linii, która oddzieliła się wcześniej, niż istniał wspólny przodek płaskowców i parzydełkowców. Innymi słowy, dwuboczne są kladem siostrzanym w stosunku do kladu “parzydełkowce + płaskowce”. Jeśli hipoteza ta zostanie potwierdzona, zagadka drzewa ewolucyjnego zwierząt będzie rozwikłana.

Literatura dodatkowa

Smith, C. L. et al. Novel Cell Types, Neurosecretory Cells, and Body Plan of the Early-Diverging Metazoan Trichoplax adhaerens. Current Biology 24, 1565–1572 (2014). https://doi.org/10.1016/j.cub.2014.05.046

Sebé-Pedrós, A. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat Ecol Evol 2, 1176–1188 (2018). https://doi.org/10.1038/s41559-018-0575-6

Davidescu, M. R., Romanczuk, P., Gregor, T. & Couzin, I. D. Growth produces coordination trade-offs in Trichoplax adhaerens, an animal lacking a central nervous system. Proceedings of the National Academy of Sciences 120, e2206163120 (2023). https://doi.org/10.1073/pnas.2206163120

Senatore, A., Reese, T. S. & Smith, C. L. Neuropeptidergic integration of behavior in Trichoplax adhaerens, an animal without synapses. The Journal of Experimental Biology 220, 3381–3390 (2017). https://doi.org/10.1242/jeb.162396

Srivastava, M. et al. The Trichoplax genome and the nature of placozoans. Nature 454, 955–960 (2008). https://doi.org/10.1038/nature07191

Nielsen, C. Early animal evolution: a morphologist’s view. Royal Society Open Science 6, 190638. https://doi.org/10.1098/rsos.190638

Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Science Advances 8, eabi5884 (2022). https://doi.org/10.1126/sciadv.abi5884