Wszystkie nasze kolebki. Część 7. Tam i z powrotem: neandertalczycy, denisowianie i my

Pozostałe wpisy z tej serii:
Część 0. Wstęp i spis treści
Część 1. Kolebka naczelnych: Laurazja/Ameryka Północna
Część 2. Kolebka małpiatek i małp: Afryka
Część 3. Navigare necesse est: emigranci
Część 4. Kolebka człekokształtnych i człowiekowatych: Eurazja
Część 5. Kolebka goryli, ludzi i szympansów: Afryka po raz drugi
Część 6. Długie i niezupełne pożegnanie z Afryką

Wpisy na podobne tematy:
Porozmawiajmy o języku (1). Wstęp: Człowiek mówiący
Porozmawiajmy o języku (2): Geny języka
Porozmawiajmy o języku (3): Od prajęzyka do języka

Jak powstają bariery między gatunkami

Myśląc o powstawaniu gatunków w przeszłości, często utożsamiamy podział geograficzny z tzw. specjacją allopatryczną, czyli taką, w której główną rolę odgrywa istnienie bariery geograficznej utrudniającej kontakt między rozdzielonymi populacjami. Z dystansu wielu milionów lat łatwo zignorować fakt, że biologiczna bariera reprodukcyjna powstaje ze sporym opóźnieniem w stosunku do barier fizycznych. Kiedy na przykład przodek małp szerokonosych przepłynął Atlantyk i wylądował w Ameryce Południowej, był jeszcze przez dość długi czas tym samym gatunkiem, co afrykańska populacja, z której się wywodził. Jedynym powodem, dla którego ustał przepływ genów, było istnienie trudno przekraczalnej bariery w postaci oceanu. Dopiero po wielu tysiącach pokoleń skutki separacji stały się nieodwracalne, ale nawet wówczas dwa gatunki siostrzane pochodzące od wspólnego przodka – afrykański i południowoamerykański – pozostawały bardzo do siebie podobne i zapewne potencjalnie zdolne do hybrydyzacji. Dopiero nagromadzenie się różnic genetycznych, morfologicznych i behawioralnych przez setki tysięcy i miliony lat zrobiło z małp wąskonosych i szerokonosych dwie całkiem osobne grupy taksonomiczne. My jednak przeprowadzamy skrót myślowy i utożsamiamy migrację z podziałem małp na dwa wielkie klady.

Z kolei datowania molekularne mogą wskazywać na rozejście się obu grup na długo przed rejsem transatlantyckim, co w jakimś stopniu odpowiada prawdzie. Po pierwsze – gatunek założycielski małp szerokonosych nie był jednocześnie przodkiem dzisiejszych małp wąskonosych, tylko jego bliskim kuzynem (również afrykańskim) – jednym z wielu, jacy żyli w tym czasie. Prawdziwy ostatni wspólny przodek wszystkich małp żył o wiele wcześniej gdzieś w Afryce. Po drugie – datowanie molekularne informuje nas, kiedy rozeszły się drogi ewolucyjne odpowiadających sobie sekwencji DNA, a nie organizmów zawierających to DNA, a to bynajmniej nie to samo, biorąc pod uwagę, że neutralne polimorfizmy (warianty DNA niemające znaczenia dla doboru naturalnego) mogą się utrzymywać w puli genetycznej przez dziesiątki tysięcy pokoleń. Wszystko to ma niewielkie znaczenie, kiedy rozważamy procesy rozciągnięte na wiele milionów lat, bo ewentualne błędy chronologii wynikające z uproszczonego opisu zdarzeń nikną w tej skali. Ale historia powstania Homo sapiens mieści się w ostatnim milionie lat – a w takiej skali błędy mogą być bardzo istotne, dlatego lepiej nie mylić pojęć.

Nasza najbliższa rodzina

Homo heidelbergensis (w szerokim sensie, obejmującym afrykańskie i europejskie odmiany znane czasem pod innymi nazwami) dał początek trzem gatunkom: człowiekowi współczesnemu (H. sapiens), neandertalczykowi (H. neanderthalensis) i denisowianinowi (na razie bez formalnej nazwy łacińskiej). Z istnienia denisowian zdano sobie sprawę dopiero w  roku 2010. Gatunek ten przypomina ducha: wiemy o nim całkiem dużo, ponieważ udało się uzyskać i zsekwencjonować jego DNA oraz zbadać próbkę proteomu; natomiast „dotykalnych” szczątków kostnych odnaleziono jak na lekarstwo – i to wcale nie tam, gdzie powinno ich być najwięcej.

Z badań molekularnych wynika, że drogi ewolucyjne ludzi współczesnych oraz kladu, do którego należą wspólnie neandertalczycy i denisowianie, rozeszły się ok. 700 tys. lat temu, po czym bardzo szybko w ewolucyjnej skali czasu – po ok. 3000 pokoleń, czyli nieco ponad 600 tys. lat temu – dokonał się podział na neandertalczyków i denisowian. Tymczasem w zapisie kopalnym widzimy obecność H. heidelbergensis w Afryce i Europie w czasie, kiedy powinny go już były zastąpić nowe gatunki; w Azji nie widzimy prawie nic. Neandertalczyk pojawia się ok. 400 tys. lat temu; jego szczątki znajdujemy w Europie, na Bliskim Wschodzie oraz tu i ówdzie w Azji Zachodniej oraz Środkowej aż po Ałtaj, na terenach nie objętych zlodowaceniem. Po denisowianach została garść zębów i kości z Ałtaju i Chin datowanych na 160–30 tys. lat temu (jeden z osobników jest hybrydą neandertalsko-denisowiańską w pierwszym pokoleniu). Ludzie typu współczesnego pojawiają się w Afryce dopiero ok. 300 tys. lat temu. Jak pogodzić te dane paleontologiczne z genetycznymi?

To w gruncie rzeczy proste. Pomijając pierwszy eksperyment migracyjny (H. antecessor), H. heidelbergensis zaczął migrować poza Afrykę ok. 700 tys. lat temu przez Bliski Wschód. Przyniósł z sobą charakterystyczną kulturę paleolityczną, którą rozwinął już w Afryce – tzw. aszelskie narzędzia kamienne. Przepływ genów między populacją afrykańską a emigrantami w Eurazji osłabł lub zanikł. Wkrótce później rozeszły się drogi populacji zajmującej zachodnią i centralną Eurazję oraz drugiej, która zajęła Azję Południową, w tym ówczesny półwysep Sundy (w holocenie częściowo zatopiony; jego lądowymi resztkami są Półwysep Malajski i wyspy: Sumatra, Borneo, Jawa i Bali). Granica między obiema populacjami przebiegała w Azji Środkowej. Nie byli to jeszcze ludzie współcześni, neandertalczycy ani denisowianie w sensie morfologicznym: nadal wyglądali zapewne jak „klasyczny” H. heidelbergensis. Stanowili natomiast odrębne (choć nie do końca szczelne) pule genetyczne dzięki barierom geograficznym. Po jakichś 200–300 tys. lat różnice zaczęły być widoczne, a proces specjacji zaszedł na tyle daleko, że trudno by go było powstrzymać i odwrócić. Dopiero wówczas, jak gdyby wyczarowane znikąd, pojawiają się trzy gatunki, które wg danych genetycznych powinny były być już od dawna rozdzielone.

Ryc. 1.

Podobieństwa między nimi są bardziej uderzające niż różnice. Wszyscy potomkowie H. heidelbergensis mają identyczny zestaw chromosomów, czyli kariotyp: ich chromosom 2 odpowiada dwóm chromosomom szympansów i innych wielkich małp. Nie wiemy, kiedy w linii H nastąpiła fuzja dwóch chromosomów odziedziczonych po dalekich przodkach, zmniejszająca liczbę ich par z 24 do 23, ale na pewno ostatni wspólny przodek ludzi współczesnych, neandertalczyków i denisowian – czyli H. heidelbergensis sprzed 700 tys. lat – miał już zredukowaną liczbę chromosomów. Wszystkie trzy gatunki potomne mają także – na przykład – te same „unikatowo ludzkie” niesynonimowe mutacje w FOXP2, który uchodzi za jeden z genów warunkujących prawidłowy rozwój zdolności do używania i rozumienia języka. A skoro mają je wszyscy potomkowie, to można sądzić, posiadał je także wspólny przodek.

Do różnic można zaliczyć strukturę populacji, o której także można wnioskować z danych genetycznych. Odłam H. heidelbergensis, z którego rozwinęli się neandertalczycy i denisowianie, był początkowo niezbyt liczny, czyli stanowił wąskie gardło ewolucyjne. Następnie obie populacje powiększyły się znacznie i objęły zasięgiem praktycznie całą wolną od lodu Eurazję; składały się jednak z niewielkich, silnie rozproszonych grup. Wymiana genetyczna między nimi zachodziła, ale była niezbyt częsta, czego skutkiem były znaczne różnice regionalne i być może negatywne skutki kojarzenia krewniaczego i dryfu genetycznego w skali lokalnej.

Inaczej niż większość naczelnych H. heidelbergensis i wywodzące się z niego gatunki potrafiły sobie poradzić zarówno w tropikach, jak i w surowym klimacie Eurazji na obrzeżach północnego lądolodu (choć jeszcze w Afryce ich przodkowie stracili większość owłosienia ciała). Pomiędzy 800 a 500 tys. lat temu trwało jedno z najrozleglejszych zlodowaceń plejstocenu, pokrywające okresowo m.in. 90% obecnej powierzchni Polski. Wynalazki takie jak ogniska i okrycia ze skór zwierzęcych umożliwiały radzenie sobie z zimnem. Żyjąc w Eurazji przez setki tysięcy lat lat, neandertalczycy i denisowianie rozwinęli liczne przystosowania do życia w warunkach trudnych dla przybyszów z Afryki.

Pogmatwane rodowody

Pierwotny odłam H. heidelbergensis pozostał w afrykańskiej kolebce o wiele dłużej. Prawdopodobnie rozwinął w tym czasie zdolność do tworzenia większych grup społecznych, utrzymujących regularne kontakty z innymi grupami, co zapobiegało negatywnym skutkom rozdrobnienia populacji choćby dzięki regularnemu praktykowaniu egzogamii. Około stu tysięcy lat po tym, jak zaczął przypominać nas fizycznie (co pozwala zaetykietować go formalnie jako H. sapiens), podjął kolejne próby eksplorowania innych kontynentów. Najwcześniej pojawił się na Bliskim Wschodzie i być może na Bałkanach (jeśli identyfikacja szczątków z jaskini Apidima w Grecji jest poprawna), ale większe migracje nastąpiły dopiero w ciągu ostatnich 100 tys. lat. H. sapiens najpierw poszedł śladem denisowian: zajął południe Azji i ok. 60 tys. lat temu dotarł do Australii; następnie (50–45 tys. lat temu) skolonizował Europę i Syberię. Przez długi czas żył na terenach zamieszkanych także przez neandertalczyków i denisowian. Dochodziło przy tym – mówiąc eufemistycznie – do przepływu genów między sąsiadami. Dzięki temu genomy Europejczyków są w mniej więcej 1,8–2,4% neandertalskie, genomy mieszkańców dużej części Azji są w 2,3–2,6% neandertalskie i w 1% denisowiańskie, natomiast w Azji Południowo-Wschodniej, Australii i Oceanii domieszka neandertalska spada, a denisowiańska wzrasta do 4–6%. Zresztą neandertalczycy również uzyskali domieszkę DNA „sapiensowego”.

Sądząc po śladach genetycznych, wygląda na to, że denisowianie dotarli aż do linii Wallace’a, a może nawet poza nią, np. do Nowej Gwinei. Ponieważ w tym okresie Nowa Gwinea była połączona pomostem lądowym z Australią, trudno wykluczyć możliwość, że pierwsi  Australijczycy byli denisowianami. Na razie jednak brak jakichkolwiek lokalnych śladów acheologicznych ich obecności – i to nie tylko tam, ale także na terenach, gdzie musieli być szczególnie liczni. Warto jednak pamiętać, że dla nauki nie istnieli jeszcze 15 lat temu. Przyszłe odkrycia mogą uczynić ten gatunek mniej widmowym. Ostatnie badania genetyczne sugerują, że w regionie nowogwinejskim dochodziło do hybrydyzacji H. sapiens i denisowian jeszcze 30–15 tys. lat temu. Jeśli te wyniki zostaną potwierdzone, będzie to oznaczało, że denisowianie przeżyli najdłużej spośród „przedsapiensowych” populacji Homo, jako że neandertalczycy wymarli wcześniej, ok. 40 tys. lat temu. Istnieją podejrzenia, że wiele szczątków kostnych „wczesnych ludzi” z południowej Azji – jak wielkomózgi H. longi z północno-wschodnich Chin (146 tys. lat temu) oraz kilka innych skamieniałości sprzed 300–200 tys. lat o dyskusyjnej przynależności systematycznej – w rzeczywistości reprezentuje denisowian.

Sytuację komplikuje fakt, że denisowianie musieli być grupą dość zróżnicowaną populacyjnie i genetycznie. Nieliczne szczątki kostne, jakie znamy, pochodzą od „denisowian północnych”, podczas gdy domieszka genetyczna u ludów Melanezji czy Australii pochodzi od „denisowian południowych”, praktycznie nieznanych w stanie kopalnym. Denisowiański jest z dużym prawdopodobieństwem pojedynczy ząb sprzed ok. 150 tys. lat znaleziony w 2022 r. w Laosie – i to właściwie na razie wszystko. Cierpliwie zbierane dane zawierają wewnętrzne sprzeczności. Na przykład proteom szkliwa zębów żuchwy znalezionej w Xiahe na Płaskowyżu Tybetańskim (prowincja Gansu, Chiny) wyraźnie wskazuje na denisowianina (sprzed 160 tys. lat). Z kolei kompletna czaszka z Hualongdong (300 tys. lat temu), też uważana za potencjalnie denisowiańską, należy do osobnika o innej budowie żuchwy. Autorzy analizy opublikowanej zaledwie 4 dni temu (patrz linki poniżej) kwestionują związki tej czaszki z denisowianami i proponują wyodrębnienie kolejnego gatunku czy podgatunku w i tak już sporej grupie bliskich krewnych człowieka współczesnego. Dopóki nie dysponujemy materiałem do badań molekularnych (czyli DNA lub białkami pozyskanymi z kości), jesteśmy skazani na niepewne hipotezy i spory specjalistów. Trzeba się pogodzić z tym, że historia rodzaju Homo jest wielowątkowa, pogmatwana i nadal pełna „duchów”.

Ryc. 2.

Eurocentryzm i sapienscentryzm

Wczesne badania nad pochodzeniem H. sapiens skupiały się głównie na Europie i na regionalnych populacjach takich jak „ludzie z Cro-Magnon” (czyli wczesny europejski typ człowieka). Przywiązywano dużą wagę np. do faktu, że z terenów nadatlantyckich (Francja, Hiszpania) znane były najstarsze przykłady figuratywnych malowideł jaskiniowych (sprzed ok. 35–30 tys. lat). Nie znajdowano tak starej sztuki naskalnej w innych częściach świata, mogło się zatem zdawać, że Europa „przewodziła” światu jako intelektualna elita ludzkości. Jednak w ostatnich latach odkryto równie stare, a nawet starsze malowidła przedstawiające zwierzęta i ludzi w Azji Południowo-Wschodniej, a być może także w Australii (tu datowanie nie jest pewne). Obecny rekordzista to portret świni celebeskiej (Sus celebensis) z Sulawesi, liczący sobie co najmniej 45,5 tys. lat. Powodem, dla którego zabytki tego typu są skrajnie rzadkie, jest fakt nietrwałości malowideł, o ile szczęśliwym trafem nie znajdą się w miejscu, w którym lokalne warunki nie dopuszczają do ich degradacji przez dziesiątki tysięcy lat. Wiadomo zresztą, że i neandertalczycy zostawiali po sobie rysunki naskalne, tyle że niefiguratywne (przynajmniej wg obecnego stanu wiedzy).

Warto podkreślić, że neandertalczycy i denisowianie nie byli jaskiniowymi „małpoludami” zapowiadającymi nadejście „stuprocentowych” ludzi, tylko siostrzanymi odłamami wywodzącymi się od tego samego przodka, co my. Nie byli naszymi poprzednikami na Ziemi, lecz ewoluowali równolegle z nami. Prawdopodobnie H. sapiens zawdzięcza im pewną liczbę przystosowań pomagających przeżyć poza Afryką, przekazanych dzięki hybrydyzacji.  Nawiasem mówiąc, na ałtajskim pograniczu denisowianie i neandertalczycy również się krzyżowali. W regionie sundajskim denisowianie współistnieli najpierw z H. erectus, a później nie tylko z H. sapiens, ale też z reliktowymi populacjami wyspiarskimi, takimi jak H. floresiensis. Dopiero od niedawna jesteśmy jedynym na Ziemi gatunkiem Homo. Sami siebie nazwaliśmy „rozumnymi”, ale nic nie wskazuje na to, żeby rozumu brakowało naszym wymarłym kuzynom. Zdarza się, że kiedy wytworom kultury materialnej (jak narzędzia czy ozdoby) nie towarzyszą kości, nie jesteśmy w stanie stwierdzić, który z siostrzanych gatunków jest ich wytwórcą. Gdyby nie chodziło o nasz własny gatunek i mniej lub bardziej świadomą potrzebę akcentowania swojej wyjątkowości, to według kryteriów czysto biologicznych zapewne mówilibyśmy o jednym „chronogatunku” H. sapiens, który powstał w Afryce około miliona lat temu i przez większą część swojej historii był podzielony na kilka podgatunków, rozgraniczonych niezbyt szczelnymi barierami reprodukcyjnymi. Sądzę zresztą, że w miarę jak rozwija się paleoantropologia, taksonomia rodzaju Homo będzie ewoluowała w tym kierunku.

Ryc. 3.

W czasie, gdy znikli neandertalczycy, H. sapiens miał jeszcze przed sobą kolejne przygody. Prawdopodobnie już ok. 35 tys. lat temu zaczęła się penetracja obu Ameryk. Najpierw ludzie paleolityczni pojawili się w wolnej od lodu Beringii (włącznie z Alaską i Jukonem), skąd w późniejszym czasie mogli przenikać na południe przez powstające w pewnych okresach naturalne korytarze w lądolodach lub drogą morską wzdłuż wybrzeża. Wiele tysięcy lat później ludzie dotarli także do Grenlandii, Madagaskaru, Islandii, wysp Polinezji, Nowej Zelandii i wreszcie Antarktydy, gdzie ssaki w pełni lądowe nie postawiły stopy od czasu wyginięcia tamtejszej fauny eoceńskiej. Populacje eurazjatyckie wracały też wielokrotnie do Afryki. Ale to już całkiem inna historia, podobnie jak loty na Księżyc.

Lektura dodatkowa

Poziom rozwoju kulturalnego neandertalczyków: https://johnhawks.net/weblog/neandertal-visual-culture-art/
Wczesna historia neandertalczyków i denisowian: https://www.pnas.org/doi/10.1073/pnas.1706426114
Rodzaj Homo a „geny języka”: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766443/
Hybrydyzacja i przepływy genów między gatunkami Homo: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007349
Czaszka z Hualongdong: doi.org/10.1016/j.jhevol.2023.103411, https://phys.org/news/2023-08-china-human-lineage.html
Kto to zrobił? Czasem po prostu nie wiemy: https://www.scientificamerican.com/article/cave-that-housed-neandertals-and-denisovans-challenges-view-of-cultural-evolution/
Kolonizacja Beringii: wstęp do podboju półkuli zachodniej: https://royalsocietypublishing.org/doi/10.1098/rspb.2022.2246

Opisy ilustracji

Ryc. 1. Rekonstrukcja wyglądu Homo longi z Chin (146 tys. lat temu) na podstawie kompletnej czaszki odkrytej w 1933 r., ale formalnie opisanej dopiero w 2021 r. Puszka mózgowa o archaicznym kształcie, ale objętości wielkiej jak u H. sapiens lub H. neanderthalensis (ok. 1420 cm³), uprawdopodabnia hipotezę  – na razie trudną do zweryfikowania – że mamy do czynienia z denisowianinem. Rekonstrukcja: Chuang Zhao. Źródło: Ni, Ji et al. 2021 (licencja CC BY-NC-ND).
Ryc. 2. Zawartość neandertalskiej „skrzynki z narzędziami” i „kasetki z biżuterią”. Źródło: Carron, d’Errico et al. 2011 (fair use).
Ryc. 3. Artystyczna wizja północnoamerykańskich Paleoindian polujących na mastodonta (Mammut americanum). Większość megafauny obu Ameryk wymarła wkrótce po pojawieniu się większych grup łowców paleolitycznych. Autor: Ed Jackson. Źródło: Christopher R. Moore 2023, The Conversation (licencja CC BY-NC).

Wszystkie nasze kolebki. Część 6. Długie i niezupełne pożegnanie z Afryką

Pozostałe wpisy z tej serii:
Część 0. Wstęp i spis treści
Część 1. Kolebka naczelnych: Laurazja/Ameryka Północna
Część 2. Kolebka małpiatek i małp: Afryka
Część 3. Navigare necesse est: emigranci
Część 4. Kolebka człekokształtnych i człowiekowatych: Eurazja
Część 5. Kolebka goryli, ludzi i szympansów: Afryka po raz drugi
Część 7: Tam i z powrotem: neandertalczycy, denisowianie i my

2 580 000 lat temu Arktykę zaczęły skuwać lody. Lądolód antarktyczny istniał już od wielu milionów lat (przyczyną jego powstania był rozpad Gondwany i wprawienie w ruch Antarktycznego Prądu Okołobiegunowego), ale coś – być może uformowanie się w pliocenie Przesmyku Panamskiego między Amerykami – zmieniło w decydującym stopniu cyrkulację prądów morskich i doprowadziło do zlodowacenia także w Arktyce. Ziemia weszła w plejstoceńską epokę lodowcową – trzecie wydarzenie tego typu w czasie ostatniego pół miliarda lat. Klimat zaczął oscylować: cykl następujących po sobie okresów zimnych i cieplejszych powtarzał się dziesiątki razy. Co pewien czas do 30% powierzchni Ziemi pokrywało się lodem.

Obecnie, po nietypowo długim zlodowaceniu, trwającym ponad 100 tys. lat, nastąpił interglacjał. Zaczął się zaledwie około 11 700 lat temu. Traktujemy go jako osobną epokę geologicznę i nazywamy holocenem; wynika to z faktu, że znamy go „od wewnątrz” i jest on dla nas subiektywnie ważny, ale bynajmniej nie oznacza to naturalnego końca cyklów plejstoceńskich. Dwie poprzednie epoki lodowcowe, ordowicko-sylurska i karbońsko-permska, trwały nie po kilka, ale po kilkadziesiąt milionów lat. Według symulacji klimatologicznych za jakieś 50 tys. lat powinno nadejść kolejne zlodowacenie. Niewykluczone jednak, że ze względu na globalne ocieplenie spowodowane przez nasz gatunek dalszy ciąg plejstocenu trzeba będzie odwołać.

Jeszcze zanim zaczęła się epoka lodowcowa, linia H wielkich małp afrykańskich zaczęła ewoluować w nieoczekiwanym kierunku. Ponad 4 mln lat temu rodzaj Australopithecus, którego najstarszy znany przedstawiciel, A. anamensis, żył w plioceńskich lasach Kenii, stał się w pełni dwunożny. Australopiteki były wszystkożerne i chętnie polowały, podobnie jak szympansy, zapewne nawet na większą skalę i sprawniej. Późniejszy A. afarensis (do którego zalicza się słynną skamieniałość – samicę nazwaną „Lucy”) – używał narzędzi kamiennych do ćwiartowania upolowanych kopytnych. Mówimy właściwie o młodszym stadium ewolucyjnym tego samego gatunku; jeszcze młodszym był A. africanus sprzed 3,3–2,1 mln lat (pierwszy poznany australopitek, odkryty w 1924 r.). Przemiany ekosystemów leśnych w Afryce i zapotrzebowanie na mięso mogły skłonić australopiteki do wyjścia z lasów na otwarte przestrzenie, gdzie żerowały wielkie stada potencjalnej zwierzyny łownej.

Ryc. 1.

Jedna z gałęzi ewolucyjnych australopiteków, wydzielana w rodzaj Paranthropus, również opuściła lasy i zasiedliła sawanny pod koniec pliocenu (2,8 mln lat temu), ale wyspecjalizowała się w roślinożerności. Szerokie zęby do rozcierania pokarmu i potężne szczęki pozwalały parantropom żywić się wielkimi ilościami traw i turzyc. Były to naczelne solidnie zbudowane, ale miały też stosunkowo duże mózgi i używały narzędzi; ich dłonie były zręczne i zdolne do precyzyjnych chwytów.

W tym roku (2023) zespołowi badaczy z Uniwersytetu w Kopenhadze udało się wyodrębnić kilka białek ze szkliwa skamieniałych zębów gatunku Paranthropus robustus, znalezionych w jaskini Swartkrans w RPA. Skamieniałości te datowane są na ok. 2 mln lat temu. Trudno liczyć na zachowanie się DNA przez tak długi czas w warunkach tropikalnych, ale białka bywają trwalsze, a sekwencja aminokwasów w ich łańcuchach może dostarczyć równie cennej informacji jak sekwencja nukleotydów w DNA. W przypadku parantropów natrafiono m.in. na charakterystyczne dla szkliwa białka zwane amelogeninami, o których pisał tu niedawno Marcin Czerwiński. Geny, które kodują amelogeniny, ulokowane są na chromosomach płciowych X i Y, a amelogenina Y, występująca tylko u mężczyzn, różni się nieco sekwencją  od amelogeniny X, występującej u obu płci. Pozwoliło to – podobnie jak w kryminalistyce – na odróżnienie zębów pochodzących od samców od tych, które najprawdopodobniej pochodziły od samic parantropów.

Zidentyfikowane i zsekwencjonowane białka porównano z tymi, które występują u orangutanów, goryli, obu gatunków szympansów, ludzi współczesnych, neandertalczyków i denisowian, w celu ustalenia prawdopodobnych powiązań filogenetycznych tych gatunków. Analiza wskazuje, że badane osobniki Paranthropus robustus należą do linii H, ale że ludzie, neandertalczycy i denisowianie są bliżej spokrewnieni z sobą nawzajem niż ktokolwiek z nich z parantropem. Odkrycie tylko potwierdza to, o czym i tak wiedziano już przedtem, ale zapewne w przyszłości uda się wyodrębnić białka kolejnych gatunków kopalnych, a wówczas analiza molekularna pozwoli zweryfikować i skorygować w szczegółach drzewo rodowe krewnych człowieka. Już dysponujemy fragmentarycznymi proteomami (zestawami białek) nie tylko neandertalczyków i denisowian, ale również starszych gatunków Homo antecessor i H. erectus, a także gigantopiteków (dzięki czemu stwierdzono ich bliskie pokrewieństwo z orangutanami).

Ryc. 2.

Mniej więcej w tym samym czasie, gdy pojawił się rodzaj Paranthropus, inna odnoga linii H, wywodząca się być może od australopiteków o lekkiej budowie, a być może od siostrzanego względem australopiteków gatunku znanego jako Kenyanthropus platyops (sprzed 3,3–3,2 mln lat), kontynuowała zwyczaje łowiecko-zbierackie przodków, przenosząc je z lasów parkowych na sawannę i doskonaląc wytwarzanie narzędzi. Z pewnością także rozwijały się sposoby komunikacji społecznej, przekazywane pozagenetycznie, na zasadzie uczenia się od współplemieńców. Musiało to być w każdym razie coś, co sprowokowało nacisk selekcyjny na powiększenie mózgu i zmiany w jego architekturze. Od momentu, gdy mózgi członków tej linii powiększyły swoją objętość o 50% w porównaniu z szympansami lub wczesnymi australopitekami, czyli od ok. 2,3 mln lat temu, przyjęło się zaliczać je do nowego rodzaju Homo pod nazwą H. habilis.

Rodzaj Homo żył obok innych przedstawicieli linii H, być może okazyjnie krzyżując się z nimi. Jednak australopiteki „lekkie” wymarły 2 mln lat temu, a parantropy milion lat później. Wówczas Homo pozostał sam na placu boju. Jego najbliżsi krewni zamieszkiwali lasy deszczowe w sposób niewidzialny dla paleontologów. Klimat plejstoceński spowodował także w Afryce skurczenie się zasięgu lasów tropikalnych o zwartym sklepieniu, ale wciąż było ich dość, żeby dać schronienie dziesiątkom gatunków leśnych naczelnych, mniejszych i większych. Dzisiejsze dwa gatunki rodzaju Pan, szympans (P. troglodytes) i bonobo (P. paniscus), zaczęły się rozdzielać we wczesnym plejstocenie (2–1,5 mln lat temu), kiedy obszar występowania ich przodków przecięła rzeka Kongo. Dwa gatunki Gorilla, goryl nizinny (G. gorilla) i górski (G. beringei) są produktem jeszcze późniejszej specjacji sprzed ok. ćwierć miliona lat.

Podobnie jak australopiteki, Homo rozszerzył swój zasięg na całą Afrykę Wschodnią; zaczął się też różnicować, stąd nazwy gatunkowe chętnie nadawane nowo odkrywanym skamieniałościom, takim jak H. gautengensis lub H. rudolfensis. Około 2 mln lat temu wyewoluował gatunek wzrostu dzisiejszego człowieka, o mózgu jeszcze większym niż u H. habilis. Górował on kulturowo nad poprzednikami, wykazując przy tym wyjątkową ruchliwość i zdolności przystosowawcze. Wynikały one z plastyczności zachowań i umiejętności uczenia się, a zatem do pewnego stopnia uniezależniały go od naturalnych warunków środowiska. Był to H. erectus (odmiany afrykańskie znane są także jako H. ergaster). Gatunek ten nauczył się wykorzystywać ogień i być może (jeśli wymagała tego sytuacja) klecić dość złożone konstrukcje – np. tratwę z pni i gałęzi zdolną do unoszenia się na wodzie przez dłuższy czas.

Szybki wzrost masy mózgu musiał być związany z czymś całkowicie nowym, takim jak doskonalenie myślenia symbolicznego i początki porozumiewania się za pomocą mowy. Starsze gatunki typu H. habilis istniały obok H. erectus jeszcze przez jakiś czas, choć większość z nich wymarła w ciągu pół miliona lat, Jednak sensacyjne odkrycie H. naledi z Południowej Afryki dowodzi, że co najmniej jedna odmiana Homo o cechach prymitywnych przeżyła o wiele dłużej, niż ktokolwiek się spodziewał – aż do ok. 300 tys. lat temu.

W Afryce H. erectus występował na całym kontynencie, od Czadu i Etiopii po RPA; niemal natychmiast wyruszył też poza Afrykę. Według przeważającego dziś poglądu czaszki z Dmanisi w Gruzji (1,8 mln lat temu) należą do bardzo wczesnej odmiany H. erectus. Być może zahaczył i o Europę, ale raczej nie szukał szczęścia na zimnych stepach Eurazji: kolejne grupy emigrujące z Afryki wybierały kierunek na wschód. W krótkim czasie H. erectus dotarł do Chin i do Azji Południowo-Wschodniej, zatrzymując się w końcu w okolicach linii Wallace’a na subkontynentcie Sunda (dziś szczątkowo istniejącym pod postacią Półwyspu Malajskiego i części archipelagu Indonezji). Kilka peryferyjnych populacji przedostało się ze stałego lądu na izolowane wyspy, takie jak Komodo/Flores (wówczas połączone) i Luzon (Filipiny). Być może dały tam początek endemicznym gatunkom, jak karłowaty H. floresiensis i zagadkowy H. luzonensis (choć ich genealogia pozostaje niejasna wobec braku materiału do badań molekularnych). Te reliktowe populacje wymarły ok. 50 tys. lat temu, czyli znacznie później niż „klasyczny” H. erectus, który zniknął prawdopodobnie ponad 140 tys. lat temu.

Tymczasem ewolucja afrykańskich odmiany H. erectus biegła w kierunku dalszego powiększania mózgu i komplikowania zachowań. W okresie 1,2–0,8 mln lat temu nastąpiła migracja przez Cieśninę Gibraltarską do atlantyckich regionów Europy Zachodniej (od Hiszpanii po Wielką Brytanię). Kopalne szczątki populacji, która jej dokonała, znaleziono w jaskini pod Atapuerką w Hiszpanii i nazwano H. antecessor (podsuwając, jak to bywa w takich razach, niekoniecznie poprawną sugestię, że jest to nasz bezpośredni przodek). Natomiast afrykański H. erectus gładko wyewoluował na całym obszarze swojego występowania w H. heidelbergensis, gatunek już zdecydowanie typu współczesnego (H. antecessor był zapewne jego wczesną formą). Mózg H. heidelbergensis miał ponad 1000 cm³, czyli wielkością prawie nie ustępował naszemu. Gatunek ten grzebał zmarłych, starannie obrabiał swoje narzędzia i polował, używając oszczepów z kamiennymi grotami. Wszysko, co wiem o biologii, antropogenezie i językoznawstwie, właściwie zmusza mnie do przyjęcia, że H. heidelbergensis używał języka mówionego.

Jednak z  czysto subiektywnego punktu widzenia człowieka współczesnego jeszcze większe znaczenie miała kolejna specjacja, również związana z migracjami poza Afrykę. W ostatnim odcinku spotkamy nasz własny gatunek.

Lektura dodatkowa

Przyczyny zlodowacenia Arktyki:  https://www.whoi.edu/oceanus/feature/how-the-isthmus-of-panama-put-ice-in-the-arctic/
Galeria gatunków z linii ewolucyjnej H: https://humanorigins.si.edu/evidence/human-fossils/species
Paranthropus robustus i jego zębowy proteom: https://www.nature.com/articles/d41586-023-02242-z
Homo naledi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559886/
H. erectus i pierwsze migracje poza Afrykę: https://www.sciencemag.org/news/2016/11/meet-frail-small-brained-people-who-first-trekked-out-africa
Odkrycie H. luzonensis w 2019 r.: https://www.nature.com/articles/s41586-019-1067-9
Enigmatyczne gatunki Homo z Azji Południowo-Wschodniej: https://www.nature.com/articles/d41586-019-01019-7
Białka ze szkliwa zębów H. antecessor: https://science.sciencemag.org/content/276/5317/1392

Opisy ilustracji

Ryc. 1. Paranthropus boisei, godny szacunku sawannowy wegetarianin, niesłusznie wymarły 1,2 mln lat temu. Rekonstrukcja: Cicero Moraes. Źródło: Wikipedia (licencja CC BY-SA 4.0).
Ryc. 2. Australopithecus sediba, południowoafrykański gatunek sprzed 1,98 mln lat, pod niektórymi względami na tyle podobny do wczesnych przedstawiecieli Homo, że słuszność zaliczenia go do rodzaju Australopithecus bywa kwestionowana. Rekonstrukcja: Adrie i Alfons Kennis, Neanderthal Museum, Mettmann (Niemcy). Źródło: Wikipedia (licencja CC BY-SA 4.0).

Wszystkie nasze kolebki. Część 5. Kolebka goryli, ludzi i szympansów: Afryka po raz drugi

Pozostałe wpisy z tej serii:
Część 0. Wstęp i spis treści
Część 1. Kolebka naczelnych: Laurazja/Ameryka Północna
Część 2. Kolebka małpiatek i małp: Afryka
Część 3. Navigare necesse est: emigranci
Część 4: Kolebka człekokształtnych i człowiekowatych: Eurazja
Część 6: Długie i niezupełne pożegnanie z Afryką
Część 7: Tam i z powrotem: neandertalczycy, denisowianie i my

Patrz też: Porozmawiajmy o języku (1). Wstęp: Człowiek mówiący

Ziemia przybiera wygląd współczesny

W miarę, jak naczelne krążyły po świecie, migrując kontynentu na kontynent, życie na Ziemi zaczynało z wolna przypominać takie, jakie znamy współcześnie. Wymarła większość regionalnych reliktów kredy i paleogenu, między innymi dlatego, że międzykontynentalne wymiany fauny przynosiły inwazje gatunków zahartowanych w ewolucyjnych wyścigach zbrojeń. Skutecznie wypierały one konserwatywnych autochtonów, którzy nie przywykli do stawiania czoła konkurencji w swoich niszach zajmowanych od milionów lat. Krótkie mioceńskie ocieplenie skończyło się 14 mln lat temu i od tej pory klimat już systematycznie się schładzał.

Dziś kojarzymy Afrykę ze  stadami zebr, antylop, bawołów, żyraf czy nosorożców przemierzającymi sawanny, z lwami, lampartami, hienami i likaonami. Trzeba jednak pamiętać, że żadnego z wymienionych zwierząt nie było w Afryce przed uformowaniem się Mostu Gomfoterów, a niektóre z nich to przybysze jeszcze późniejsi, plioceńsko-plejstoceńscy. Przed mioceńską wymianą fauny jedynymi lądowymi ssakami Afryki były Afrotheria (w tym trąbowce), hienodonty1, naczelne, gryzonie i nietoperze, do których pod koniec eocenu dołączyły ziemnowodne antrakotery2. Konsekwencją migracji w obie strony i mieszania się fauny w nieznanych wcześniej kombinacjach były nowe wyzwania i naciski selekcyjne, wywierające wpływ na dalszą ewolucję małp.

Przypuszczalnie ok. 10 mln lat temu jedna z linii rodowych eurazjatyckich człowiekowatych wróciła tam, skąd wyszli jej przodkowie – do Afryki. Skorzystała znowu z pomostów lądowych tworzących się między Afroarabią a Azją Południowo-Zachodnią. Tą samą drogą, ale w drugą stronę – z Afryki do Azji i Europy – powędrowała w tym czasie część koczkodanowców z podrodziny gerez (Colobinae). Niewykluczone, że rozdzielenie się linii orangutanów i pozostałych człowiekowatych było skutkiem podziału geograficznego i że orangutany wyewoluowały we wschodniej części Eurazji, a ich grupa siostrzana w zachodniej; w każdym razie gatunki potencjalnie (aczkolwiek nie na pewno) leżące po naszej stronie rozgałęzienia znamy np. z Hiszpanii (Anoiapithecus brevirostris, Pierolapithecus catalaunicus). Szlak lądowy z południa Europy do Afryki wiódł przesmykiem między Morzem Śródziemnym a śródlądową Paratetydą, a następnie przez Turcję i Bliski Wschód. Być może właśnie tą drogą nasi przodkowie zawrócili na południe.

Uporządkujmy sobie terminologię

Systematycy wymyślili niestety ciąg absurdalnie monotonnych nazw coraz mniejszych kladów zawierających nasz gatunek. Jak gdyby mało było nadrodziny człekokształtnych (Hominoidea) i rodziny człowiekowatych (Hominidae), mamy jeszcze podrodzinę Homininae, plemię Hominini, podplemię Hominina i ostatecznie rodzaj Homo. Żeby uniknąć stosowania tych konfundujących określeń, wprowadzę następujące terminy skrótowe:

  • Linia goryli (G jak Gorilla) to wszystkie gatunki, żywe i wymarłe, bliżej spokrewnione z rodzajem Gorilla niż z ludźmi i szympansami; jej jedynymi żyjącymi przedstawicielami są dwa gatunki goryli: nizinny (G. gorilla) i górski (G. beringei).
  • Linia ludzi (H jak Homo) to wszystkie gatunki, żywe i wymarłe, bliżej spokrewnione z rodzajem Homo niż z szympansami; jedyny gatunek współczesny to H. sapiens.
  • Linia szympansów (P jak Pan) to wszystkie gatunki, żywe i wymarłe, bliżej spokrewnione z szympansami niż z ludźmi; reprezentują ją współcześnie szympans zwyczajny (P. troglodytes) i bonobo (P. paniscus).

Teraz możemy zdefiniować linię ludzi i szympansów HP: obejmuje ona wszystkie gatunki bliżej spokrewnione z ludźmi lub szympansami niż z gorylami (w tym ostatniego wspólnego przodka H i P). Wreszcie linia wielkich małp afrykańskich (GHP) obejmuje wszystkie gatunki bliżej spokrewnione z gorylami, ludźmi lub szympansami niż z orangutanami (w tym ostatniego wspólnego przodka goryli, ludzi i szympansów). Jeśli to kogoś interesuje: GHP = Homininae, HP = Hominini, H = Hominina. Uff! Taki sposób definiowania kladów („wszystkie gatunki bliżej spokrewnione z X niż z Y”) nazywa się stem-based albo branch-based.

Oddzielenie się linii GHP od orangutanów nastąpiło prawdopodobnie 14–13 mln lat temu. Parę milionów lat póżniej jacyś przedstawiciele GHP znaleźli się w Afryce, gdzie 10–8 mln lat temu podzielili się na linie G i HP. Ta druga z kolei rozwidliła się na linie H i P 7–6 mln lat temu.

Warto podkreślić, że były to podziały szybko następujące po sobie w ewolucyjnej skali czasu. Dwa miliony lat to w przypadku typowych ssaków dość, żeby specjacja zaszła daleko, ale bariera reprodukcyjna nie jest jeszcze szczelna i zdarza się przepływ genów między siostrzanymi gatunkami. Ponadto neutralne polimorfizmy (warianty sekwencji DNA ewoluujące bez nacisku doboru naturalnego) odziedziczone w spadku po wspólnym przodku ulegają utrwalaniu przez dryf losowy w sposób nieunikniony, ale powolny – w ciągu tysięcy pokoleń. Jeśli proces ten trwa dłużej niż odstępy czasu między kolejnymi specjacjami, wówczas utrwalenie tego lub innego odziedziczonego wariantu następuje niezależnie w poszczególnych gatunkach już po ich rozejściu się. Dlatego – choć ludzie są najbliższymi krewnymi szympansów (co potwierdza większość danych molekularnych) – są takie fragmenty genomu, których wariant ludzki i goryli (albo szympansi i goryli) są z sobą najbliżej spokrewnione. Jest to przewidywany przez teorię skutek niekompletnego sortowania linii filogenetycznych, potwierdzający szybkie rozchodzenie się gałęzi G, H i P: poszczególne fragmenty genomu mogą w takich warunkach mieć własne drzewa rodowe nie całkiem pokrywające się z rodowodem swoich nosicieli.

Goryle i szympansy – bardziej zagadkowi niż ludzie

Mamy względnie bogatą dokumentację paleontologiczną linii H (poczynając od australopiteków, o których będzie traktował kolejny odcinek serii), natomiast cała reszta grupy GHP posiada ubożuchną kartotekę w zapisie kopalnym. Na przykład Chororapithecus abyssinicus sprzed 8 mln lat wydaje się wczesnym reprezentantem linii G, ale innych kopalnych „pragoryli” po prostu dotąd nie znaleziono (a i materiał, na którego podstawie został opisany C. abyssinicus, to raptem jeden kieł i osiem niekompletnych trzonowców pochodzących od kilku różnych osobników). Jedynego jak dotąd kopalnego szympansa (Pan sp. – w tym przypadku mamy trzy zęby) znamy ze środkowego plejstocenu (0,5 mln lat temu). Przyczyna może być następująca: małpy z linii H przystosowały się do życia w niezbyt zwartych lasach parkowych, a następnie także na sawannach, gdzie widoki na pośmiertną fosylizację były jako takie, podczas gdy goryle i szympansy były (i do dziś pozostały) mieszkańcami głębokich lasów deszczowych, gdzie mało który nieboszczyk ma szansę się zachować jako skamieniałość.

Różni nas także lokomocja. Nasi kuzyni z linii G i P preferują szczególny sposób chodzenia na czworakach – w postawie półwyprostowanej, z użyciem knykci dłoni jako punktów podparcia. Goryle i szympansy wykształciły go prawdopodobnie niezależnie od siebie, co oznacza, że niekoniecznie powinniśmy sobie wyobrażać wspólnego przodka linii G, H i P na ich podobieństwo. Nie tylko człowiek ewoluował i zmieniał się; one robiły to samo, tyle że na swój odmienny sposób.

Ryc. 1.

Sahelanthropus tschadensis (7 mln lat temu), Orrorin tugenensis (6,1–5,7 mln lat temu), Ardipithecus kadabba (5,6 mln lat temu) i jego plioceński krewny A. ramidus vel „Ardi” (4,4 mln lat temu, znany z wyjątkowo bogatego zbioru kości) wydają się bocznymi, bazalnymi odgałęzienia linii HP wbrew wczesnym interpretacjom, które – jak łatwo zgadnąć – pochopnie robiły z każdego z nich po kolei „odnalezione ogniwo” i  „ludzkiego praprzodka”. Jeśli któryś z nich należał mimo wszystko do linii H, to trudno stwierdzić z całkowitą pewnością, bo ewolucja wielkich małp była mozaikowa: cechy uważane za „zaawansowane” pojawiały się niezależnie w różnych liniach, a cechy niesłusznie uważane za „prymitywne” okazują się w istocie innowacjami niewystępującymi u wspólnych przodków GHP.

Wzmiankowane małpy prowadziły życie nadrzewne, miały (w każdym razie w przypadku ardipiteków) chwytne stopy, przystosowane do chodzenia po gałęziach i pionowej wspinaczki, nie używały jednak knykci do podpierania się na ziemi. Wygląda na to, że przystosowania do pionowego ustawienia ciała i zdolność do fakultatywnej (choć z początku niezgrabnej) dwunożności wykształciły się jeszcze u nadrzewnych przodków. Linia H z nie do końca jasnego powodu poszła inną drogą niż szympansy i goryle: postawiła na usprawnienie lokomocji dwunożnej, gdy ewoluowała ku coraz bardziej naziemnemu trybowi życia. Ok. 3 mln lat temu wybiegła z lasów na otwarte sawanny – już zdecydowanie na dwu nogach.

Narząd, z którego jesteśmy dumni

I na koniec jeszcze o naszym ulubionym organie – mózgu. Poruszałem już tę kwestię w jednym z wcześniejszych wpisów na tym blogu. Wczesne naczelne nie wyróżniały się wartością tzw. współczynnika encefalizacji (EQ) spośród innych łożyskowców, ale w liniach ich potomków kilkakrotnie pojawiła się tendencja do rozrostu mózgu, niezależnie wśród małp Starego i Nowego Świata. U małp, podobnie jak u waleni, EQ jest ogólnie wysoki, choć silnie zróżnicowany. Widać, że jego zmiany nie były konsekwentnie jednokierunkowe, a oprócz imponujących wzrostów zdarzały się często spadki. Wbrew naiwnemu kojarzeniu większego mózgu z malejącym dystansem filogenetycznym od człowieka, bardzo wysoki EQ ma wiele małp szerokonosych, np. kapucynki (Cebus). Z kolei u szerokonosych wyjców (Alouatta) i wąskonosych gerez (Colobus) objętość mózgu oraz EQ spadły grubo poniżej małpiej średniej. Szacuje się, że mózg goryla nie zmniejszył się od czasów ostatniego wspólnego przodka wielkich małp afrykańskich, ale masa ciała znacznie wzrosła, wobec czego obniżył się EQ. Wspólny przodek P i H miał EQ blisko górnej granicy dla pozostałych wąskonosych, mimo to jednak aż do plejstocenu rekordzistami encefalizacji wśród wszystkich zwierząt pozostawały walenie zębowce (Odontoceti).

Ryc. 2.

Nie oznacza to, że inteligencję człowiekowatych z miocenu i pliocenu dzieliła od naszej jakaś przepaść. Ogólnie miały one duże mózgi, bo były dużymi zwierzętami, a przy porównywalnym EQ bezwzględna wielkość mózgu niewątpliwie też odgrywa znaczącą rolę. Poza tym rozmiar to nie wszystko: inteligencja zależy od wielu czynników, w tym od cech strukturalnych nieprzekładalnych na proste miary. Ptaki bywają równie inteligentne jak naczelne mimo działającej bezustannie od mezozoiku silnej presji ewolucyjnej, żeby ich mózgi były „kompaktowe” (co jest ważne u zwierząt latających). Wszystkie człekokształtne i inne małpy zaszły wysoko, jeśli chodzi o zdolności komunikacyjne i życie społeczne, a jeśli można sądzić po współczesnych przykładach, już miliony lat temu nieobce im było wytwarzanie prostych narzędzi i przekazywanie wiedzy oraz umiejętności drogą pozagenetyczną, przez uczenie się i naśladownictwo. Taki przekaz pozwala na tworzenie zaczątków kultury i ewolucji kulturalnej. A z tym wiąże się ostatni etap niniejszej sagi, czyli emigracje linii H poza Afrykę.

Przypisy

1) O hienodontach (Hyaenodonta) nie było wcześniej mowy, więc wyjaśniam, że był to wymarły rząd łożyskowców blisko spokrewnionych z drapieżnymi (Carnivora). Wbrew nazwie nie były kuzynami hien. Choć pochodziły z Europy, już w paleocenie pojawiły się w Afryce, gdzie aż do miocenu były jedynymi wielkimi ssakami mięsożernymi. Niektóre z nich osiągały ogromne rozmiary i specjalizowały się w polowaniach na trąbowce. Wydaje się jednak, że afrykańskie hienodonty nie wykształciły form wspinających się na drzewa, być może zatem zagrażały małpom w ograniczonym stopniu. Hienodonty wymarły z końcem miocenu, a ich rolę przejęły stopniowo  najpierw szablozębne koty z podrodziny Machairodontinae, a później inne grupy właściwych drapieżnych.

2) Antrakotery były przodkami hipopotamów i bliskimi krewnymi waleni. Jako jedyna grupa parzystokopytnych przedostały się przez morze i skolonizowały Afrykę pod koniec eocenu (ok. 35 mln lat temu), czyli na długo przed powstaniem Mostu Gomfoterów.

Lektura uzupełniająca

Rozstanie z gorylami i możliwe skamieniałości ich kuzynów: https://www.nature.com/articles/nature16510
Jedyna znana skamieniałość szympansa: https://www.nature.com/articles/nature04008
Orrorin tugenensis: https://www.nature.com/articles/ncomms3888
Sahelanthropus, Orrorin, Ardipithecus: https://www.nature.com/scitable/knowledge/library/the-earliest-hominins-sahelanthropus-orrorin-and-ardipithecus-67648286/
Anatomia Ardiego: https://www.pnas.org/content/112/16/4877
Nieliniowa ewolucja mózgu i zdolności poznawczych: https://www.pnas.org/content/111/20/E2140

Opisy ilustracji

Ryc. 1. Puzzle dla paleontologów: szczątki Ardiego (Ardipithecus ramidus). Tego rodzaju skamieniałości można uznać za wyjątkowo dobrze zachowane. Muzeum Narodowe Etiopii. Foto: Sailko. Źródło: Wikimedia (licencja CC BY 3.0).
Ryc. 2. Młode szympansy z Bossou (Gwinea) obserwują i uczą się, jak używać narzędzi. Foto: Etsuko Nogami, Uniwersytet w Kioto.  Źródło: Science (fair use).