Co jest przeciwieństwem „zera absolutnego”?

Przeciwieństwem zera absolutnego, czyli temperatury 0 K (-273,15 stopni Celsjusza) jest temperatura 1,41681 × 1032 K. Jest to wartość tak absurdalnie wysoka, że nie bardzo wiem, do czego można ją porównać, skoro jak do tej pory nasze eksperymenty w CERN doprowadziły w czołowych zderzeniach jonów ołowiu do powstania w niewielkich obszarach przestrzeni temperatur rzędu 5,5 x 109 K. Najniższa zarejestrowana temperatura na naszej planecie to jakieś 184,15 K na stacji Wostok na Antarktydzie. Jeszcze niższą, bo około 0,00000001 K, uzyskali naukowcy w laboratorium o wdzięcznej nazwie Cold Atom Lab na pokładzie ISS, podczas gdy naukowcy niemieccy doprowadzili do tego że przez moment najzimniej we Wszechświecie było w ich laboratorium, gdzie schłodzono materię do zaledwie 38 pikokelwinów, tj. 0.000000000038K. Temperatura, przy której obiekty zaczynają świecić na czerwono, to około 798 K. Najgorętsza gwiazda we Wszechświecie ma temperaturę około 210 000 K; jest to gwiazda WR 102 w gwiazdozbiorze Strzelca.

Fajny zbiór niewiele znaczących ciekawostek, prawda? No bo co to właściwie znaczy, że gwiazda ma taką temperaturę, a na stacji Wostok termometry pokazały taką wartość i tak dalej? Sam bym niewiele z tego rozumiał, gdyby nie Feynman i to, że w naszym Wszechświecie absolutnie wszystkie obiekty muszą przestrzegać zasad zachowania (pędu, energii etc.) oraz zachowywać się w danych warunkach stosownie do swojej dualnej natury.

No to metodą Feynmana zostawmy sobie temperaturę i Kelvina na boku. Zacznijmy od zaobserwowania jakiegoś zjawiska i się nad nim pozastanawiajmy. Dlaczego na przykład, gdy nalać do kubka wody i zaparzyć herbaty, to po pewnym czasie taki napój będzie zimny? Z dokładnie tego samego powodu, dla którego możemy sobie ogrzać dłonie o taki kubek: bo emituje on energię za pośrednictwem ciepła, czyli drgań termicznych. No a jeśli coś drga, to z pewnością się porusza, a więc ta energia musi mieć postać związaną z ruchem, czyli być energią kinetyczną. Stąd prosty wniosek, że gdyby nasz kubek z herbatą nie miał żadnej energii do wyemitowania w ten sposób, to oznaczałoby to, że nie nic tam nie drga, czyli ustał jakikolwiek ruch w tym układzie – a nasz Wszechświat tak nie działa.

Czyli temperatura jest w jakiś sposób związana z tym, jak w danym układzie poruszają się różne obiekty – w tym przypadku cząsteczki składające się na herbatę. Im szybciej, tym mają większą energię kinetyczną, a więc sam kubek będzie miał większą temperaturę, która z czasem spadnie, gdyż cząsteczki napoju wytracą energię na zderzenia z cząsteczkami kubka i tak dalej. Oczywiście ta zależność dotyczy absolutnie każdego przypadku. Nieważne, czy mowa o planecie, ludzkim ciele czy atomie.

No, tylko jakie to ma znacznie dla wartości 1,41681 × 1032 K? Jaki ma ona związek z tym, jak poruszają się cząsteczki herbaty w kubku? Na pierwszy rzut oka tego nie widać, więc uprośćmy całość do jednej cząstki znajdującej się w przestrzeni i spróbujmy sobie odpowiedzieć na pytanie: co się stanie, gdy zaczniemy tę przestrzeń coraz bardziej ograniczać?

W takim ujęciu najprościej opisać to zasadami, które rządzą światem na tym poziomie, czyli mechaniką kwantową. Cząstki nie są czymś w rodzaju kulek, które obijają się jedna od drugiej i o ściany ograniczające wspomnianą przestrzeń; mamy przed sobą trochę inny świat, w którym cząstki zdają się być falami, a ściany nie muszą być z cegieł. Popularnie nazywa się to problemem cząstki w pudle potencjału.

Jak wyżej – cząstki mają naturę falową, a fale mają to do siebie, że odznaczają się pewną długością, a ponieważ przestrzeń, w której te fale muszą się zmieścić, jest ograniczona ścianami potencjału, oznacza to, że tylko że pewne długości fal są dozwolone (i mamy na to ulubiony rodzaj dowodu wielu ludzi tj. naoczny, mowa tu oczywiście o efekcie Casimira o którym więcej tutaj). Można to łatwo zapisać jak na ilustracji poniżej:

Czym są te fale materii? To pytanie dla poetów. Jak się zachowują takie fale, opisał Louis de Broglie, który zauważył, że pęd cząstki jest zależny od długości fali: im krótsza, tym pęd większy. No to zapiszmy to językiem matematyki, tak aby stworzyć wzór mówiący nam, jakie są możliwe wartości pędu dla cząstki w naszym pudle:

Dozwolone długości fali znamy z pierwszego równania; zależność pomiędzy pędem cząstki a długością fali zawiera drugi wzór, gdzie p oznacza pęd, h – stałą Plancka, a λ – długość fali.

Na razie nie jest to może jeszcze całkiem czytelne, więc uprzedzam, za chwilę będzie jeszcze dziwniej, ale na końcu wszystko stanie się oczywiste. Po co nam te wzory? Bo chcemy poznać dozwolone wartości energii cząstki uwięzionej w pudle potencjału, więc weźmy powyższe i dopiszmy do tego coś jeszcze:

Poprzednie równanie opisujące dozwolone pędy przepisałem, redukując stałą Plancka (czyli dzieląc ją przez 2π), aby było to bardziej czytelne; kolejne mówi nam wprost, że skoro cząstka porusza się w pudle swobodnie, to cała jej energia jest energią kinetyczną. Łącząc je razem, otrzymujemy wzór opisujący nam dozwolone stany energetyczne cząstki uwięzionej w takim pudle. Jako że to matematyka, to na pierwszy rzut oka może to nie być widoczne, ale ten wzór mówi nam, że skoro długość fali musi ściśle pasować do długości pudła, to tylko pewne ściśle określone stany energii są dozwolone. Cząstka może zajmować tylko ściśle określone poziomy energetyczne (lub mieć tylko ściśle określone długości fali), czyli są one skwantowane: można mieć E1 lub E2, ale nie E1,5. Mówi on nam również, że nawet najniższy dozwolony poziom energii nie jest zerowy. Podstawmy n = 1; otrzymamy wówczas taką postać powyższego:

Gdyby E miało być równe 0, to jaką wartość L musiałaby mieć wówczas długość boku pudła potencjału? Tego się nie da rozwiązać, bo fala o nieskończonej długości potrzebuje nieskończonego pudła, a takich rzeczy we Wszechświecie nie ma. Wniosek z tego prosty: jeśli cząstka jest uwięziona w pudle potencjału, to z pewnością przenosi jakąś energię i aby w nim istnieć, musi koniecznie posiadać jakieś minimum energii. I co ważne – im pudło mniejsze, tym bardziej wartość takiej energii rośnie. Jeśli zaczniemy ściskać ścianki pudła, to skróceniu ulegnie długość fali cząstki uwięzionej w środku, a skoro, jak powiedział de Broglie, p = h/λ i skoro wartość λ maleje, to wzrastać musi wartość p, czyli pędu. A skoro rośnie wartość pędu, to rośnie również energia samej cząstki. I tu zaczyna się robić ciekawie: no bo skoro rośnie pęd takiej cząstki, to rośnie również jej prędkość. Naprawdę ciekawie robi się, gdy w miarę ściskania pudła doprowadzimy prędkość cząstki do wartości bliskich prędkości światła. Wtedy przychodzi Einstein i zaczynają się efekty relatywistyczne, które powodują, że im bardziej ściskamy dany obszar przestrzeni, tym większa musi być energia minimalna cząstki. Czy jest wobec tego jakiś limit i jaki ma to związek z temperaturą 1,41681 × 1032 K?

Gdybyście teraz zmierzyli temperaturę powietrza wokół was, to tak naprawdę zmierzylibyście pośrednio średnią energię kinetyczną cząsteczek powietrza. Tak jak we wzorze mówiącym o równoważności energii i masy czynnikiem wiążącym te dwie skale jest prędkość światłą c, podobnie czynnikiem, który wyraża związek pomiędzy energią a temperaturą, jest stała Boltzmanna, zapisywana jako kB. Stąd mamy E = kBT. Jeśli rośnie energia, to rośnie również efektywna temperatura danego regionu przestrzeni. Tu warto zaznaczyć, że o ile pojęcie „temperatury” nie ma zastosowania do pojedynczych cząstek, ale do ich grup, to ta idea efektywnej temperatury jak najbardziej jest przydatna dla odpowiedzi na pytanie postawione w tytule. Im bardziej ściskamy dany region przestrzeni, tym bardziej rośnie jego efektywna temperatura. Co się zatem stanie, gdy nasze pudło osiągnie najmniejszą dozwoloną długość, czyli długość Plancka? Oznacza to, że efektywna temperatura tego regionu przestrzeni będzie przez moment najwyższą temperaturą mającą sens fizyczny. Ułamek sekundy później ten region przestanie być dostępny, zapadając się pod horyzontem zdarzeń i stając czarną dziurą, a tego, co dzieje się pod horyzontem zdarzeń, nasze teorie nie obejmują. Tak więc skoro nasze pudło musi mieć przynajmniej długość Plancka, to wstawmy to do wzoru opisującego skalę efektywnej temperatury tego regionu:

Taka była temperatura Wszechświata, gdy osiągnął rozmiary równe długości Plancka, gdy minął czas Plancka. Pytanie, czy jest to limit ostateczny, wymaga zupełnie nowej teorii, bo nasze dotychczasowe zawodzą. Jeśli ściśniemy cokolwiek do tych rozmiarów, to natychmiast ściskany obiekt zapadnie się, tworząc czarną dziurę, której fizyka wymyka się naszemu rozumieniu. Tak samo nie umiemy powiedzieć, czy Wszechświat przed upływem czasu Plancka był gorętszy. I tak to jest zazwyczaj w fizyce: zaczyna się od pytań o kubek herbaty, a kończy w okolicach czarnych dziur.

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem
.

Jak wydostać się ze studni (potencjału)?

Zacznijmy od czegoś dobrze znanego: jądra wszystkich pierwiastków cięższych niż ołów ulegają rozpadowi, przemieniając się w inne, bardziej stabilne. No, weźmy sobie taki kilogram radu-226 (oczywiście metaforycznie). Jeśli odczekać ok. 1600 lat, to okaże się, że nie mamy kilograma, tylko pół, a reszta gdzieś się ulotniła – i to dosłownie, gdyż produktem rozpadu radu jest gazowy radon. I tu często pojawia się pojawia się pytanie, na które nam (a przynajmniej mnie) nie odpowiedziano w szkole: jeśli dla radu korzystnym jest się rozpaść, to dlaczego nie dzieje się to od razu, tylko trzeba czekać? Jądro radu rozpada się, emitując cząstkę alfa, składającą się z dwóch protonów i dwóch neutronów; i jeśli mieć przed sobą takie jądro, to w żaden sposób nie jesteśmy w stanie określić, kiedy cząstka alfa zostanie wyemitowana.

Jeśli się to energetycznie opłaca, to dlaczego trzeba czekać? Żeby to zrozumieć, zastanówmy się nad tym, jak jądro atomowe wygląda, jeśli nie będziemy zaciemniać sobie obrazu protonami i neutronami 🙂 Mecz piłki nożnej każdy widział – generalnie nic ciekawego, ale za to siatkówka! Tu mamy coś interesującego z punktu widzenia fizyki. Co trzeba zrobić, aby piłka przedostała się ponad siatką z jednej połowy na drugą? No, tu akurat odpowiedź jest prosta: przerzucić odpowiednio mocno, tak aby poleciała ponad siatką, a nie poniżej. Co to znaczy „przerzucić odpowiednio mocno”? Jak dla mnie, chodzi o nadanie piłce odpowiedniej energii, aby znalazła się ponad barierą z siatki, a nie poniżej. Dokładnie o to samo chodzi, gdy chcemy wystrzelić sondę w stronę granic Układu Słonecznego: musimy nadać jej pęd, który pozwoli jej przekroczyć barierę przyciągania ziemskiego.

Jądro atomowe, jak się okazuje, również jest otoczone barierą wynikającą z oddziaływania silnego, które je spaja. Jeśliby cokolwiek chciało obszar wyznaczony taką barierą opuścić, musi posiadać energię wyższą niż ta, która wynika z jej potencjału. Brzmi skomplikowanie? To wyobraźmy sobie swojską studnię – zagłębienie w gruncie, otoczone barierą. Jeślibyśmy chcieli wyrzucić, dajmy na to, kilogramowy kamień z dna takiej studni, to potrzeba nam energii, która sprawi, że kamień znajdzie się wyżej niż krawędź bariery: E = mGh, czyli jeśli rzucamy z dna studni o głębokości trzech metrów kilogramowym kamieniem, to trzeba mu nadać energię większą niż 29,4 J. Jądro atomowe też można traktować jako studnię, tyle że nie materialną, ale studnię potencjału, z której taka cząstka alfa musi się wydostać. Podobnie jak kamień, tak i cząstka potrzebuje energii, aby przekroczyć barierę potencjału jądrowego. Ile? Tu dla wygody posłużymy się elektronowoltami zamiast dżuli (1 eV ≈ 1,602 177 33(49) · 10−19 J) – „wysokość” takiej bariery wynosi ok. 25 MeV. I tu zaczyna dziać się dziwnie, bo gdy zabraliśmy się za pomiary energii cząstek alfa powstających przy rozpadzie radu-226, to okazało się, że mają one energię ok. 4,8 MeV, czyli absolutnie nie powinny móc wydostać się poza jądro atomowe. Mają na to zbyt małe energie – tyle tylko, że rozpad radu jak najbardziej zachodzi i mamy na to dowody. Czyli że źle obliczyliśmy barierę potencjału? Nie – jej wartość jest poprawna.

Jeśli na jakieś pytanie da się odpowiedzieć jednocześnie „tak” i „nie”, to znaczy, że za chwilę zza rogu wyłoni się nasza ulubiona fizyka kwantowa. Narysujmy sobie taką studnię i cząstkę w jej wnętrzu:

Gdyby puścić ilustrację w ruch, to łatwo stwierdzić, że cząstka nie znajdzie się nigdy powyżej bariery, a więc nie może zostać wyemitowana z jądra. No, ale tak się dzieje: rozpad alfa zachodzi, więc coś musi pozwalać na to, aby zachodził. I pozwala na to sama natura naszego Wszechświata, a konkretnie tunelowanie kwantowe – i jakkolwiek dziwnie to brzmi, jest to ściśle związane z zasadą nieoznaczoności i naturą obiektów kwantowych, które nie mają ściśle określonych parametrów takich jak np. położenie. (Więcej w poprzednim tekście Zasada nieoznaczoności a zapis przyszłości). Cząstki alfa wewnątrz studni potencjału nie można sobie wyobrażać jako kulki poruszającej się po ścianach takiej studni ani jako planety orbitującej w studni potencjału związanej z oddziaływaniem grawitacyjnym z gwiazdą. Ciężko powiedzieć, co właściwie przypomina obiekt kwantowy, stąd takie metafory. Chyba najprościej będzie znów to sobie narysować:

Żeby coś powiedzieć o obiekcie kwantowym, najlepiej obliczyć jego funkcje falową, posługując się odpowiednim równaniem. Powyższa „fala” to jedynie spore i mało estetyczne uproszczenie, które należy rozumieć w następujący sposób: tam, gdzie amplituda fali jest największa, tam największe prawdopodobieństwo natrafienia na obiekt kwantowy. Jeśli taka „fala” napotka na barierę potencjału, to jej amplituda zaczyna zanikać, czyli dążyć do zera, co oznacza, że prawdopodobieństwo znalezienia się obiektu po drugiej stronie bariery jest niesamowicie małe – ale niezerowe! Czyli może się zdarzyć, że taka cząstka znajdzie się po drugiej stronie bariery, a więc poza jądrem, choć prawdopodobieństwo tego jest bardzo małe. Ponieważ takie prawdopodobieństwa sumują się w czasie, to prędzej czy później osiągniemy 50%, co nazwaliśmy sobie „półrozpadem” lub „półżyciem”.

Jądra ciężkich pierwiastków nie rozpadają się od razu, bo emitowane cząstki alfa nie mają odpowiedniej energii, aby przekroczyć barierę potencjału. Mają jako obiekty kwantowe coś innego – pewną szansę znalezienia się po drugiej stronie bariery. I ponieważ jakoś trzeba było to nazwać, to proces takiego przejścia obiektu kwantowego przez barierę pomimo niewystarczającej energii do jej przekroczenia nazywamy „tunelowaniem kwantowym”.

Przyjrzyjmy się jeszcze przez chwilę emitowanej cząstce alfa – Weźmy dwa izotopy polonu, syntetyczny polon-209 i występujący w śladowych ilościach polon-210. W pierwszym przypadku cząstka alfa jest emitowana z energią ok. 4,97 MeV a w drugim 5,4 MeV – okres połowicznego rozpadu pierwszego z izotopów to ok. 103 lata a drugiego to 138 dni. Z jądra radu-226 jest emitowana z energią ok. 4,8 MeV a czas półrozpadu tego izotopu to ok. 1600 lat. Uran-238 występujący w naturze? Emitowana cząstka alfa ma energię ok. 4,3 MeV a czas półrozpadu wynosi już 4,5 miliarda lat, podczas gdy w przypadku bizmutu-209 energia emitowanej cząstki alfa to ok. 3,14 MeV a czas połowicznego rozpadu wynosi ok. 20 trylionów lat (wiek Wszechświata to ok. 13,82 miliarda lat). Jak widać niewielka zmiana energii znajduje odbicie w zmianie okresu półrozpadu – z tym że ta zmiana jest tu nie „niewielka” ale potężna bo o wiele rzędów wielkości. Być może jest to jedna z przyczyn powodująca że wszystkie pierwiastki lżejsze niż bizmut posiadają stabilne izotopy (poza technetem i prometem) – ich ewentualny rozpad tą drogą jest tak mało prawdopodobny że można spokojnie pominąć taką możliwość i nazwać je „stabilnymi”.

W sumie to dobrze, że jądra nie rozpadają się od razu, bo życie takie, jakie znamy, nie byłoby możliwe, tak samo jak nie byłoby ono możliwe, gdyby tunelowanie kwantowe nie działało w dwie strony – bo jak pewnie wiecie, nasze Słońce działa tak, że łączy w swoim jądrze atomy wodoru w atomy helu, a my, jak wszystkie inne organizmy, korzystamy z tej energii. W uproszczeniu proces takiej fuzji polega na zbliżeniu do siebie dwóch protonów na tyle blisko, aby oddziaływanie silne pokonało odpychanie się dwóch ładunków elektrycznych. Czyli znów mówimy o barierze potencjału. Aby ją pokonać, należy mieć odpowiednią energię, a więc temperaturę. W tym przypadku byłoby potrzeba więcej niż 10 miliardów kelwinów, podczas gdy jądro naszej gwiazdy może się poszczycić zaledwie 15 milionami kelwinów. Czyli nasze Słońce jest zbyt zimne, aby mogła w nim zachodzić fuzja – ale zachodzi, gdyż obiekty kwantowe nie mają ściśle określonego położenia i czasem znajdą się tam, gdzie trzeba – czyli tam gdzie zasięg oddziaływania silnego pokonuje barierę powstającą gdy dwa tożsame ładunki elektryczne napotkają na siebie, co sprawia, że Słońce może podtrzymywać fuzję i nie zachodzi ona zbyt szybko.

A czy to zjawisko tunelowania kwantowego znalazło jakieś zastosowanie praktyczne poza tym, że dzięki niemu istnieje rozpad alfa lub fuzja w zbyt zimnym Słońcu? No pewnie – jak myślicie, niby jak inaczej powstał poniższy obraz?

fot. domena publiczna

Co to za górki i doliny? Jest to obraz powierzchni żelaza zanieczyszczonej chromem, powstały przy pomocy skaningowego mikroskopu tunelowego, który umożliwia uzyskanie obrazu o rozdzielczości na poziomie atomów.

Jak to działa? Banalnie prosto: nad powierzchnią badanej próbki przesuwa się igłę takiego mikroskopu, spreparowaną tak, aby na szczycie jej ostrza znajdował się dokładnie jeden atom. Jeśli przesuwać taką igłę nad powierzchnią badanej próbki w niewielkiej odległości, to wystarczy przyłożyć niewielkie napięcie, aby elektrony mogły pokonać obszar pomiędzy igłą a próbką, obszar będący w istocie barierą potencjału. Ponieważ mowa o przepływie ładunku elektrycznego, to nazwano to zjawisko „prądem tunelowym”, a każdy prąd posiada pewne natężenie. No to teraz przesuńmy sobie igłą nad badaną powierzchnią i zobaczmy, jak zmienia się natężenie takiego prądu tunelowego. Jeśli natrafimy na „górkę”, to szerokość bariery spadnie, a natężenie prądu wzrośnie, i na odwrót w przypadku natrafienia na „dołek”. Jeśli chcemy utrzymać stałą wartość natężenia takiego prądu, to musimy odpowiednio igłę opuszczać i podnosić w zależności od badanej powierzchni, a to właśnie pozwala na takie „mapowanie”.

Zjawisko tunelowania kwantowego jest również poważną przeszkodą dla inżynierów pracujących dla firm takich jak np. Intel, Qualcomm czy AMD. Zapewne kojarzycie te nazwy z układami scalonymi. Taki układ scalony to po prostu mnóstwo maleńkich tranzystorów upakowanych na płytce. Ile? – sporo bo przeciętnie kilka miliardów o wielkości ok. 10–14 nm (1 nm = 0,000001 milimetra). Po co nam te nanometrowe tranzystory w układach scalonych? Jak pewnie wiecie, językiem komputerów jest język bitów – zer i jedynek. Tranzystor może być wyłączony i mieć wówczas wartość zera lub włączony i mieć wartość jedynki. Przepuszczając prąd w odpowiedni sposób, możemy tranzystor włączyć lub wyłączyć, co pozwala nam mówić do komputera ciągiem zer i jedynek. Materiałem, z którego wykonany jest taki tranzystor, jest półprzewodnik (o których więcej w O lewitacji i bramkach). Zmniejszając tranzystor, zmniejszamy grubość bariery, co oznacza, że tracimy kontrolę nad tym, co mówimy „zerami i jedynkami” do komputera.

Jak sami widzicie – gdzie nie spojrzeć, tam coś dziwnego we Wszechświecie, a za każdym z tych dziwactw kryje się to, że „Pan Bóg” jednak gra w kości 🙂

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem
.

Zasada nieoznaczoności a zapis przyszłości

Przeglądając Twittera, natrafiłem na wpis, którego fragment na ilustracji poniżej:

Czy przyszłość każdego z nas jest zapisana? Śmiem wątpić; bliższa mi jest wersja Sary Connor z „Terminatora”: – Nie ma przeznaczenia, bo sami tworzymy nasz los 🙂 „Gdybyśmy mieli urządzenie zdolne do utrwalenia wszystkich parametrów chwili…”, to i tak nie miałoby to żadnego znaczenia dla poznania naszej przyszłości. Skąd we mnie takie przekonanie? Pod wpisem pozwoliłem sobie umieścić żartobliwy komentarz dotyczący Heisenberga i zasady nieoznaczoności: nasz Wszechświat po prostu tak nie działa.

Zasadę nieoznaczoności często tłumaczy się w ten sposób, że nie da się jednocześnie zmierzyć dokładnie dwóch parametrów danego obiektu, np. pędu i położenia, jak na poniższym rysunku:

„Nie da się zmierzyć” – czyli gdyby się dało, to Pan Profesor miałby rację? Nie, z jakiegoś powodu ludzie uczepili się tego „pomiaru” w opisie zasady nieoznaczoności, a tymczasem nawet gdyby nie było żadnych pomiarów, to i tak nie dalibyśmy rady zapisać wszystkich parametrów chwili. Głównie dlatego, że one po prostu nie istnieją w tej formie, jaką sobie wyobrażamy.

Generalnie wszystko było by dobrze, gdy nie Einstein, Planck, de Broglie, Heisenberg i kilku innych, którzy popełnili mechanikę kwantową. Materia w naszym Wszechświecie, jak pewnie pamiętacie, ma taką złośliwą cechę: w zależności od tego, jak sprawdzać, to zachowuje się jakby była cząstkami albo falami, choć nie jest ani jednym, ani drugim. Na lekcjach chemii mówi się o materii tak, jakby składała się z cząstek w postaci kulek o takim czy innym ładunku – i na potrzeby chemii taki opis jest jak najbardziej w porządku; na lekcjach fizyki zaś dowiadujemy się, że światło, które jest falą elektromagnetyczną, można też traktować jako strumień cząstek o określonych energiach, tj. fotonów. I to zazwyczaj wystarczy, żeby przyjąć postawę: „I tak nic z tego nie zrozumiem”.

O tym, skąd pomysł na fotony, szczegółowo opowiemy sobie w tekście, który będzie kolejną częścią po Rozgrzany do czerwoności! i Katastrofa w ultrafiolecie…

Dobra, ale teraz, choćby pokrótce: skąd u fizyków na przełomie XIX i XX wzięła się ta idea sformułowana jako dualizm korpuskularno-falowy? Trochę z obserwacji, a trochę z intuicji de Broglie’a. W tamtych czasach odkryto i potwierdzono istnienie promieniowania elektromagnetycznego, z tym że nie wszystkie obserwacje dało się wyjaśnić, przyjmując, iż to promieniowanie ma naturę fal. Istniały eksperymenty dotyczące zjawisk takich takich jak efekt fotoelektryczny, promieniowanie ciała doskonale czarnego etc., których wyników w żaden sposób nie dało się wyjaśnić przy założeniu, że światło składa się z fal. Problemy z wyjaśnieniem znikły, gdy przyjęto, iż promieniowanie elektromagnetyczne można opisać równorzędnie tak, jakby omiatały nas nie fale, ale krople o określonych wielkościach.

Do takich wniosków doprowadziły między innymi obserwacje zjawiska znanego jako efekt fotoelektryczny. Polega ono na tym, iż gdy oświetlić powierzchnię metalu światłem o określonej częstotliwości, to wybije ono elektrony, powodując wyraźny odczyt elektroskopu. Zjawisko zachodzi wyłącznie przy określonych częstotliwościach światła. Można to zrozumieć bardzo prosto, przyglądając się efektowi gradobicia. Maleńkie kuleczki są po prostu irytujące, duże – zabójcze. Podobnie Einstein wyobraził sobie zjawisko efektu fotoelektrycznego: światło w tym opisie nie przychodzi w falach, ale w paczkach o energiach zależnych od częstotliwości fali światła.

Tylko że takie paczki są w tym opisie bezmasowe, więc jak to pogodzić z E = mc2? Najlepiej to dać dokończyć Einsteinowi: „mc2” to tylko człon całego równania i opisuje on energię spoczynkową. Jeśli obiekt się porusza (a foton robi to zawsze i niezależnie od przyjętego układu odniesienia), to prawdziwy opis tej sytuacji równaniem wygląda tak: E2 = (pc)2 + (mc2)2. Ponieważ mówimy o cząstce, która ma parametr m=0, to całość upraszcza się do następującej postaci: E = pc. Foton może wybić elektron z powierzchni metalu, ponieważ posiada energię i porusza się, a więc posiada pęd opisany jako: p=E/c. Z tego opisu łatwo wywnioskować, że pęd to nic innego niż matematyczny opis tego, jak obiekt się porusza i jakie ma to skutki dla otoczenia.

No i co miałoby z tego wynikać dla samej zasady nieoznaczoności i dualizmu? Ano, przyjrzał się temu kolejny naukowiec, który znał również inne prace Einsteina oraz Plancka. Mam tu na myśli de Broglie’a, o którym wspominałem wcześniej. Wiedział on z prac Plancka, że energię cząstki światła można również wyrazić następująco: E = hν gdzie E oznacza energię, h – stałą Plancka a greckie ν (czytaj: „ni”, nie mylić z v) opisuje częstotliwość fali. Postanowił przyjrzeć się temu dokładniej i przeprowadził kilka operacji z tym równaniem. Zapewne jemu też ν myliło się z v więc postanowił zapisać to inaczej:

Mnie też to nie rzuciło się w oczy od razu – całość trochę naświetlił mi Feynman. Prędkość światła nie pasowała de Broglie’owi po tej stronie równania, więc matematycznie przeniósł ją na drugą, aby sprawdzić, czy całość będzie miała dalej sens, i wtedy to zobaczył 🙂 Przecież pęd fotonów czy też fal elektromagnetycznych wraża związek p=E/c, a więc jeśli prawdziwy jest związek pomiędzy pędem a samą długością fali, to mamy równanie które łączy w sobie korpuskularne i falowe cechy materii.

Po co o tym mówię? Bo de Broglie na tym nie poprzestał, tylko zaczął zastanawiać się nad tym, co właściwie zapisał. Prawa fizyki są wszędzie takie same, zatem skoro foton ma cechy zarówno cząstki, jak i fali, to uznał on na logikę, że nie ma powodu, aby to samo nie dotyczyło na przykład elektronów. Znając pęd elektronu, można obliczyć długość i częstotliwość fali z nim związaną i przy pomocy odpowiedniego eksperymentu sprawdzić, czy elektron zachowuje się jak zwarta kulka, czy też rzeczywistość jest o wiele dziwniejsza, niż nam się zdaje. Te rozważania zaprzątały jego głowę w 1924. Niedługo później, bo już w 1927, udało się uzyskać doświadczalne potwierdzenie jego hipotezy. Panowie Davisson i Germer strzelali do niklowej płytki strumieniem elektronów i zliczali za pomocą detektorów ustawionych pod różnymi kątami, jak się odbijają od jej powierzchni. Dla czegoś tak małego jak elektron nawet najgładsza powierzchnia (z naszej perspektywy) jest pełna nierówności; założyli więc oni, że zwarte kulki będą odbijać się pod różnymi kątami, a wzór na ekranie detektora będzie rozproszony, chyba że de Broglie miał słuszność ze swoim równaniem wówczas…

fot. domen publiczna

Na ilustracji powyżej wyniki eksperymentu, na ilustracji poniżej wynik eksperymentu z dwiema szczelinami (przy użyciu fal światła) gdyby ktoś miał wątpliwości czy dobrze to rozumie:

fot. domena publiczna

Tak mniej więcej i pokrótce doszliśmy do tego, że materia jest… ciężko powiedzieć czym, ale ma pewne właściwości, które potrafimy badać i zapisywać. No, choćby ten pęd. Tylko znów: jaki to ma związek z zasadą nieoznaczoności? Przyszli kolejni naukowcy, spojrzeli na to rozumowanie i zapytali się, czy dla takiej fali materii da się stworzyć równanie falowe, którego rozwiązanie pozwoli nam np. określić położenie elektronu?

Tak, da się, a twórcą tego równania był znany dręczyciel kotów Schrödinger. W czasie wypadu w góry z kochanką stworzył takie coś:

Możemy sobie teraz rozpisać po kolei, co oznacza to wszystko po kolei, rozwiązać je sobie dla przykładowej cząstki, przekształcić do innych postaci itp. Tylko po co? Już teraz pewnie większość Czytelników zastanawia się, czego nie zrozumie za chwilę. W razie czego wyjaśniam: tego co wyraża to równanie nie rozumiał sam autor, który zresztą podważał własną teorię na każdym kroku, bo też nie mógł przyjąć do wiadomości, że jeśli przyjrzeć się rzeczywistości dokładniej, to robi się bardzo dziwnie. To równanie w każdym razie zawiera w sobie prawie wszystkie parametry obiektu takiego jak elektron (nie ma tu np. spinu). Jeśli rozwiązać takie równanie, to wyjdzie nam na przykład taka fala:

To nie jest ścieżka ruchu elektronu ani linia życia czy cokolwiek innego, tylko po prostu elektron. No dobra, a te górki i doliny – co oznaczają? No, to było właśnie dobre pytanie! Te „górki i doliny”, nawiasem mówiąc, w równaniu reprezentuje grecka litera Ψ, czyli psi, oznaczająca funkcję falową. Bez wchodzenia w matematykę: Schrödinger nie wiedział, czy to równanie ma jakikolwiek sens empiryczny, ale na pewien trop wpadł Max Born – równie wielki fizyk tamtego okresu.

Twierdził on, że owe górki i doliny nie oznaczają nic fizycznego, ale jeśli Ψ potraktować matematyką i zapisać tak: |Ψ|2, czyli jako kwadrat modułu funkcji (co to znaczy z matematycznego na polski można sobie dla tego opisu darować), to te „górki i doliny” oznaczają prawdopodobieństwo natrafienia na cząstkę w danym miejscu. Na ilustracji powyżej nie oznacza to, że elektron jest w dwóch miejscach na raz, albo że pojawia się i znika raz w jednym, a raz w drugim, ale że jeśli chcemy znaleźć elektron (czy inną cząstkę o danych parametrach), to największe szanse mamy w danym punkcie przestrzeni – tam gdzie „falowanie fali” czyli jej amplituda ma największą wartość. Oznacza to ni mniej ni więcej, tylko że obiekty kwantowe po prostu same w sobie nie mają określonego położenia, dopóki go nie zmierzymy, np. oświetlając dane miejsce światłem. Zanim nie zaczniemy szukać (i znajdziemy), to nie można powiedzieć, że taki obiekt ma określone położenie w przestrzeni. Spójrzcie raz jeszcze na ilustrację, ona mówi nam wprost, że nie ma pewności, jest prawdopodobieństwo.

No właśnie? Jakie to ma wszystko znaczenie – te fale, pędy, funkcje itp.? Zróbmy to samo, co Feynman, i zastanówmy się, co to wszystko znaczy po kolei. Wyobraźmy sobie elektron, który ma ściśle określony pęd – czyli mamy elektron, który przemierza przestrzeń z określoną, stałą prędkością. Feynman w tym momencie zapewne by się uśmiechnął i zapytał, czy aby na pewno; przecież de Broglie coś odkrył: p = h/λ. Nie mówimy o cząstce w formie kulki frunącej przed siebie, ale o fali, która wyglądałaby w jednowymiarowym uproszczeniu mniej więcej tak:

Jeśli szukamy długości fali dla cząstki, która ma określony pęd p, to musimy przekształcić wzór do postaci λ = h/p. Stała Plancka jest stała, a pęd też ma określoną wartość, więc wynikiem musi być fala mająca „górki i doliny” w równych odległościach od siebie. Ponieważ pęd ma tylko jedną wartość, to gdziekolwiek spojrzeć, fala wygląda tak samo. Teraz pomyślcie, co to oznacza dla opisu zasady nieoznaczoności.

Skoro pęd mamy dobrze oznaczony, to jego nieokreśloność wynosi 0, a ile wobec tego wynosi nieokreśloność położenia? Gdzie należy szukać cząstki? Jeśli jedna wielkość wynosi zero, to druga musi zmierzać do nieskończoności, a cały zapis traci sens. Przypatrzcie się tej fali i porównajcie ją z poprzednią. W tym przypadku wartość Ψ wynosi wszędzie tyle samo, co oznacza, że prawdopodobieństwo znalezienia obiektu o takich parametrach jest takie samo w każdym miejscu Wszechświata – a to bez sensu. Co trzeba zrobić, aby cząstka miała jednak bardziej oznaczone położenie? Jak sprawić aby amplituda tej fali w którymś z jej punktów była równa 0? Jak to powiedział Feynman na jednym swoich wykładów: „Po prostu dodaj kolejną falę o nieco innej długości, i zobacz, jak wygląda ich suma”.

I teraz już widać, że są takie obszary, gdzie prawdopodobieństwo namierzenia obiektu jest większe, bo takie nakładające się fale wzajemnie się wzmacniają i wygaszają. Tylko spójrzcie, co to oznacza: dodaliśmy falę, a więc obiekt nie ma już teraz tylko jednej wartości p, ale p1 i p2, co automatycznie powoduje, że nieważne, jak byśmy próbowali mierzyć – mamy przysłowiowe szanse 50 na 50 że będzie to p1 lub p2. Te wartości, jak widzicie z ilustracji, nie różnią się jakoś dramatycznie, ale są wyraźnie inne. I to, z którym z tych parametrów przyłapiemy cząstkę na detektorze, absolutnie nie wynika z niczego. Po prostu albo orzeł, albo reszka.

Tyle właściwie teorii. Możemy oczywiście sobie jeszcze popróbować tworzyć różne fale, ale widać od razu, że im bardziej zlokalizowany ma być obiekt, tym więcej fal (a więc możliwych wartości pędu) należy dodać, co zwiększa nam jego nieoznaczoność – i w drugą stronę tak samo. Żeby nasze zabawy mogły dać jakiś sens fizyczny, to wynik musi spełniać poniższą zależność:

Wartości tych parametrów tj. nieoznaczoności pędu i położenia nie mogą po prostu wynosić zero bo w konsekwencji otrzymujemy albo obiekt z ściśle określonym pędem ale jednocześnie wiemy że że należy go szukać z równym prawdopodobieństwem wszędzie lub obiekt który jest maksymalnie zlokalizowany ale jednocześnie z niepewnością pędu dążącą do maksimum a takich obiektów po prostu nie ma – a to w konsekwencji wyklucza możliwość „zapisania wszystkich parametrów chwili”. Nasza przyszłość nie jest nigdzie zapisana bo jej po prostu jeszcze nie ma – musimy tam dosłownie dotrzeć zmieniając swoją pozycję w czasie. Póki co dotarliśmy do końca tych przydługich rozważań. Wszelkiego rodzaju uwagi, komentarze, argumenty przeciw mile widziane.

A już kolejnym razem powiemy sobie o Plancku i o tym jak łyżką narobił bałaganu w fizyce.

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem
.