Ciemna materia, czyli królowa jest naga

Niewiele wiemy o ciemnej materii, właściwie tylko tyle, że musi istnieć, aby podstawowe prawa fizyki działały tak, jak powinny.

Wiadomo, że każda masa wytwarza pole grawitacyjne oddziałujące na wszystkie inne masy we Wszechświecie, także galaktyki i gromady galaktyk. I właśnie zaobserwowane anomalie ruchu tych obiektów zaburzyły spokojny sen fizyków. Okazało się, że oszacowana (dość dokładnie) masa galaktyki podstawiona do równań ruchu, przy zmierzonej prędkości obrotowej, jest dalece niewystarczająca, aby utrzymać jej spójność. Ruch obrotowy powinien rozproszyć gwiazdy na wszystkie strony, ponieważ siła grawitacji przeciwstawna sile odśrodkowej jest niewystarczająca. Dalece niewystarczająca. Tak dalece, że równania ruchu stabilizowałyby galaktykę dopiero przy kilkukrotnym zwiększeniu jej masy. Problem w tym, że tajemnicza substancja jest całkowicie niewykrywalna przez jakiekolwiek detektory.

Materia, którą znamy, jest tak zwaną materią barionową, czyli składa się z protonów, neutronów i elektronów. Drogą dedukcji wnioskujemy więc, że ciemna materia jest materią niebarionową. Ale czym konkretnie? Istnieje wiele hipotez, jedną z nich są WIMPS (ang. Weakly Interacting Massive Particles), czyli słabo oddziałujące masywne cząstki o masie 10-100 razy większej od masy protonu i reagujące z „normalną” materią tylko za pośrednictwem oddziaływań słabych i grawitacyjnych. Na przykład hipotetyczne neutralino, o wiele cięższe od neutrina i podobnie słabo wykrywalne. Problem w tym, że neutralino nie zostało jeszcze odkryte, ba, nie przewiduje go żadna teoria. Drugim kandydatem jest sterylne neutrino, czwarty, hipotetyczny rodzaj neutrina (znamy trzy rodzaje mające pokrycie w Modelu Standardowym: neutrino elektronowe, mionowe i taonowe). Zarówno neutralino jak i neutrino oddziałuje z materią tylko przez grawitację, a z tą mamy podstawowy problem – Model Standardowy nie ujmuje grawitacji jako oddziaływania. Pozostali kandydaci na budulec ciemnej materii to aksjon i “ciemny” foton (też cząstki hipotetyczne). Antymaterię, jako byt skrajnie reaktywny i agresywny wobec materii klasycznej, możemy już na starcie odrzucić.

Desperacja naukowców w poszukiwaniu ciemnej materii osiągnęła taki poziom, że bierze się nawet pod uwagę, iż prawo powszechnego ciążenia Newtona, a nawet ogólna teoria względności nie obowiązują w skali galaktycznej. Są nawet konkretne propozycje zmodyfikowania dynamiki Newtona lub OTW, aby pasowały do obserwacji. Jedno, co wiemy o ciemnej materii, to to, że ma masę, ponieważ wytwarza pole grawitacyjne. Drugie, że porusza się znacznie wolniej od światła.

Trochę historii

Autorem koncepcji ciemnej materii jest Fritz Zwicky, który odkrył anomalie w ruchu galaktyk w obrębie gromady galaktyk. Galaktyki poruszały się zbyt szybko jak na masę, którą posiadały, a gromada się nie rozpadała. Aby wytłumaczyć tę nienormalność, zaproponował istnienie „ciemnej materii” (niem. Dunkle Materie), której oddziaływanie grawitacyjne miało dostosować obserwacje do równań ruchu. Zwicky był uznanym, wielce kreatywnym w swoich pomysłach astronomem. Dość powiedzieć, że jest odkrywcą 120 supernowych, wymyślił i upowszechnił nazwę „supernowa”, pierwszy odkrył gwiazdę neutronową i opisał zjawisko soczewkowania grawitacyjnego.

Istnienie i oddziaływanie ciemnej materii w obrębie jednej galaktyki odkryła Vera Cooper Rubin, amerykańska astronom(-ka). Pod koniec lat osiemdziesiątych XX. wieku obserwując ruch wirowy Galaktyki Andromedy zauważyła, że materia galaktyki bardziej odległa od centrum porusza się równie szybko jak obiekty leżące bliżej środka. Jedynym wytłumaczeniem było istnienie nieznanej i niewidocznej ciemnej materii na jej obrzeżach. Odkrycie Rubin zasługiwało na Nobla, niestety, była kobietą i Nobla nie dostała. Decyzje Komitetu Noblowskiego bywały w przeszłości dość kontrowersyjne. Także Mirosław Dworniczak pisał o pomyłkach Komitetu Noblowskiego. Zachęcam też do lektury tekstów o kobietach w nauce: część 1, część 2, część 3.
O wadze odkrycia Very Rubin i nienagrodzeniu jej Noblem wypowiedziała się amerykańska astronom(-ka) Emily Levesque:
„Istnienie ciemnej materii całkowicie zrewolucjonizowało naszą koncepcję wszechświata […]; ciągłe wysiłki mające na celu zrozumienie roli ciemnej materii doprowadziły do powstania całych dziedzin nauki w astrofizyce i fizyce cząstek elementarnych. W testamencie Alfreda Nobla nagroda z fizyki jest uznawana za „najważniejsze odkrycie”. Jeśli ciemna materia nie pasuje do tego opisu, to nie wiem, co będzie.”

Ryc. 1 Vera Rubin. Źródło: [4]

Poszukiwania

Trwają (na razie bezskuteczne).

Pomysł 1. Skoro cząstki ciemnej materii są wielokrotnie cięższe od protonu, to w zderzeniu ze zwykłą materią powinny zostawiać ślad, na przykład wyżłobienie w skale. Dotychczas nie trafiono na żaden ślad tego typu.

Pomysł 2. (rokujący) Skupiska ciemnej materii powinny zaginać światło, czyli tworzyć soczewki grawitacyjne. I rzeczywiście, odnaleziono wiele miejsc, gdzie występuje mikrosoczewkowanie grawitacyjne pomimo braku skupisk materii. W 2016 roku zespół kierowany przez Van Dokkuma odkrył galaktykę zwaną Dragonfly 44, która wydaje się składać prawie wyłącznie z ciemnej materii. Z drugiej strony od 2018 roku astronomowie odkryli kilka galaktyk, które wydają się całkowicie pozbawione ciemnej materii.

Pomysł 3. Budowa bardziej czułych detektorów neutrin. Pod powierzchnią Antarktydy zbudowano wielki detektor neutrin Neutrino IceCube, którego zadaniem jest upolowanie sterylnego neutrino. Na razie bez powodzenia.

Ryc. 2 Schemat detektora IceCube. Licencja: Wikimedia Commons

Pomysł 4. Eksperymenty nakierowane na wykrycie cząstek ciemnej materii w najpotężniejszych zderzaczach cząstek. Badania tego typu są prowadzone w CERN-owskim Wielkim Zderzaczu Hadronów.

Pomysł 5. Obserwacje w zakresie promieniowania gamma. Teleskop Fermi Gamma-ray Space Telescope należący do NASA stworzył gamma-mapę jądra Drogi Mlecznej. Potwierdził tym samym nadmiar promieniowania gamma w tym obszarze. Obserwacje te przeczą przewidywaniom naukowym, za to są zgodne z niektórymi modelami uwzględniającymi ciemną materię.

Pomysł 6. Kosmiczny teleskop Jamesa Webba, obserwujący Kosmos w zakresie promieniowania podczerwonego, a tym samym mogący zajrzeć głębiej „wgłąb czasu”, bliżej momentu Wielkiego Wybuchu, może przyjrzeć się wczesnej ewolucji galaktyk. Bo od anomalii ruchu galaktyk wszystko się zaczęło.

Pomysł 7. Misja Euclid Europejskiej Agencji Kosmicznej zaprojektowana specjalnie w celu poszukiwań ciemnej materii. Misja ma na celu dokładne zmapowanie materii Wszechświata, a w szczególności rozmieszczenie galaktyk.

Pomysł 8. Obserwacje mikrofalowego promieniowania tła. Sonda Planck spędziła w punkcie Lagrange’a kilka lat na dokładnym mapowaniu mikrofalowego promieniowania tła, które jest pozostałością po Wielkim Wybuchu. Wykryte niejednorodności dostarczyły pewnych wskazówek co do rozmieszczenia ciemnej materii we Wszechświecie.

Pomysł 9. Badanie promieni kosmicznych. Na Międzynarodowej Stacji Kosmicznej umieszczono spektrometr magnetyczny alfa (AMS), wykrywający antymaterię.
Zarejestrowaliśmy nadmiar pozytonów i ten nadmiar może pochodzić z ciemnej materii” – powiedział Samuel Ting, laureat Nagrody Nobla z Massachusetts Institute of Technology. „Ale w tej chwili nadal potrzebujemy więcej danych, aby upewnić się, że pochodzi ona z ciemnej materii, a nie z jakichś dziwnych źródeł. To zajmie nam jeszcze kilka lat”.

Pomysł 10. Poszukiwania śladów zderzenia cząstek WIMP z atomami ksenonu. Eksperymenty takie przeprowadzono w Południowej Dakocie (projekt LUX) i we Włoszech (LNGS XENON1T). Jak dotychczas niczego nie wykryto.

Trochę liczb

Szacunki co do ilości i rozmieszczenia ciemnej materii we Wszechświecie pozwalają na pewne projekcje w stosunku do skali ziemskiej. Na podstawie ruchu ziemskich satelitów szacuje się, że masa Ziemi jest o około 0,005-0,006% większa niż dotychczas zakładaliśmy.

Według ostatnich szacunków Wszechświat w 68% składa się z ciemnej energii, 27% to ciemna materia, a pozostałe 5% to normalna materia (obserwowalna). Takie proporcje zmuszają więc do zastanowienia się, która materia jest „normalna”, a która „nienormalna”.

Ryc. 3 Rozmieszczenie galaktyk przypomina sieć z węzłami. Źródło: [1]

Jakie mamy teorie związane z ciemną materią?

Mamy wiele teorii, wszak wyobraźnia nasza jest nieograniczona, a ciemna energia i ciemna materia mogą służyć jako zapchajdziury wszędzie tam, gdzie klasyczne teorie są niewystarczające.

Teoria 1. Ciemna energia jest właściwością przestrzeni. Wiadomo przecież, że pusta (w sensie pustki absolutnej) przestrzeń nie istnieje. Jedna z wersji teorii grawitacji Einsteina, ta zawierająca stałą kosmologiczną, mówi, że „pusta przestrzeń” może posiadać własną energię. Ponieważ energia ta jest właściwością samej przestrzeni, nie ulega rozrzedzeniu w miarę jej rozszerzania się. W miarę jak pojawia się coraz więcej przestrzeni, pojawia się więcej tej energii przestrzeni. W rezultacie ta forma energii spowodowałaby coraz szybsze rozszerzanie się Wszechświata. Stała kosmologiczna, pomysł Einsteina na coraz szybszą ekspansję Wszechświata, przez kilkadziesiąt lat była krytykowana jako nie mająca podstaw teoretycznych. Dopiero w ostatnich latach wróciła do łask i może być pośmiertnym tryumfem Einsteina i jego wkładem w nowoczesną kosmologię.

Ryc. 4 Tempo ekspansji Wszechświata jest coraz szybsze; oczywiście za sprawą ciemnej energii.
Źródło: [3]

Teoria 2. Innym wyjaśnieniem ciemnej energii jest założenie, że jest to nowy rodzaj dynamicznego pola energii wypełniającego całą przestrzeń, którego wpływ na ekspansję wszechświata jest odwrotny do wpływu materii i normalnej energii. Niektórzy teoretycy nazwali to „kwintesencją”, czymś na kształt piątego elementu greckich filozofów.
Teoria 3. Teoria grawitacji Einsteina nie jest poprawna. Czy rozwiązaniem problemu ciemnej energii jest nowa teoria grawitacji?

Podsumowanie

Podsumowanie jest bardzo krótkie: wiemy, że nic nie wiemy, nie wiemy gdzie szukać, nie mamy oparcia w żadnej teorii, szukamy na oślep. Ciemna materia i ciemna energia są największą zagadką kosmologii. Wiemy tylko tyle, że jest coś na rzeczy.

Źródła:

  1. “Czym jest ciemna materia” https://www.space.com/20930-dark-matter.html
  2. “Ciemna materia jak na razie poza granicami naszego poznania” https://mlodytechnik.pl/technika/28680-ciemna-materia-jak-na-razie-poza-granicami-naszego-poznania
  3. “Ciemna energia, ciemna materia” https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy
  4. “Jak Vera Rubin potwierdziła istnienie ciemnej materii” https://www.astronomy.com/science/how-vera-rubin-confirmed-dark-matter/
  5. Wikipedia

Kryptografia kwantowa, czyli w poszukiwaniu absolutu

Ten artykuł jest rozwinięciem tekstu Splątanie kwantowe, czyli coś, co działa, ale nie wiadomo dlaczego, w którym zostaną przybliżone zagadnienia kryptografii kwantowej.

Po pierwsze należy wyjaśnić, co rozumiemy przez pojęcie „kryptografia kwantowa”. Kryptografia kwantowa, przynajmniej ta stosowana obecnie, nie polega na kwantowym szyfrowaniu przekazu informacji. To odbywa się nadal metodami i algorytmami tradycyjnymi. Zjawiska kwantowe są używane do bezpiecznej transmisji klucza szyfrującego, wykorzystując zasadę nieoznaczoności Heisenberga mówiącą, że każde odczytanie polaryzacji fotonu powoduje bezpowrotne zniszczenie tej informacji. Oznacza to, że każda ingerencja mająca na celu podsłuchanie przesyłanego klucza może być wykryta i powoduje ponowne jego przesłanie, aż do skutku. Przy przesyłaniu kwantów światła nie ma możliwości podsłuchu pasywnego, każdy odczyt strumienia fotonów powoduje jego wykrywalne zakłócenie.

Kwantowa dystrybucja klucza (Quantum Key Distribution QKD) wykorzystuje dwa kanały przesyłu: tradycyjny światłowód jako kanał publiczny oraz kanał kwantowy (też światłowodowy) do przesyłu pojedynczych fotonów klucza. Kanał kwantowy jest dużo wolniejszy od kanału publicznego z dość oczywistych względów, transmituje strumień pojedynczych fotonów a nie ich modulowaną wiązkę. Oba kanały są używane do różnych celów, które opiszę dalej.

Znamy wiele protokołów QKD, spora w tym też zasługa polskich naukowców. Opiszę jeden z nich, podstawowy protokół Bennetta-Brassarda zwany BB84 opracowany w 1984 roku.

Podstawy

Konieczne jest zapoznanie się z podstawowymi pojęciami dotyczącymi polaryzacji kwantu światła (fotonu). Światło jest falą elektromagnetyczną, która drga we wszystkich możliwych kierunkach. Przepuszczenie światła przez odpowiedni ośrodek powoduje, że drgania stają się uporządkowane i odbywają się tylko w jednej płaszczyźnie. Mówimy wtedy o polaryzacji liniowej, płaszczyznę nazywamy płaszczyzną polaryzacji, a kąt, który tworzy płaszczyzna polaryzacji z płaszczyzną pionową – kątem polaryzacji. W kryptografii kwantowej używa się polaryzacji pionowej (0 stopni i 90 stopni) oraz ukośnej (45 stopni i 135 stopni). Nazywamy je bazami – odpowiednio: baza prosta i baza ukośna.

Kryptografia kwantowa wykorzystuje dwa kanały: kwantowy kanał komunikacji prywatnej i klasyczny kanał komunikacji publicznej. Kanał kwantowy służy do wymiany klucza za pomocą cząstek kwantowych (fotonów), a kanał publiczny do uzgadniania baz (o tym później) i korekcji błędów.

Kryptografia kwantowa opiera się na dwóch cechach mechaniki kwantowej: zasadzie nieoznaczoności Heisenberga i twierdzeniu o nieklonowaniu. Twierdzenie o nieklonowaniu mówi, że ​​nie jest możliwe utworzenie identycznych kopii nieznanego stanu kwantowego. Dzięki temu można dowiedzieć się, czy ktoś przerwał (podsłuchał) kanał kwantowy podczas transmisji.

Wysyłany foton jest spolaryzowany w jednej z dwóch baz (prosta i ukośna), a w ramach bazy: pionowo lub poziomo dla bazy prostej i diagonalnie lub antydiagonalnie dla bazy ukośnej, co jest znane jedynie nadającemu. Wybór bazy i polaryzacji w ramach bazy odbywa się losowo. Odbiornik, za pomocą losowo wybranej bazy odczytuje polaryzację fotonu. Od strony technicznej odczyt odbywa się poprzez przepuszczenie fotonu przez kryształ kalcytu, charakteryzujący się dwójłomnością, czyli współczynnik załamania w tym krysztale zależy od kierunku polaryzacji światła, który, w zależności od polaryzacji fotonu aktywuje prąd elektryczny w jednym z dwóch fotopowielaczy. Odczytana informacja binarna, 0 lub 1, zależy od kierunku jednej z czterech możliwych polaryzacji.

Ryc. 1 Alfabet kwantowy [1]

Protokół Bennetta-Brassarda (BB84)

Tradycyjnie nadawcę nazywamy Alice, a odbiorcę Bobem. A więc Alice zamierza przesłać bezpiecznie klucz szyfrujący jako ciąg losowo spolaryzowanych fotonów do Boba. Posługując się podanym wyżej alfabetem jest to ciąg bitów. W tym celu dla każdego fotonu losowo wybiera jedną z dwóch baz (prosta, ukośna) i jedną z dwóch ortogonalnych polaryzacji w zależności od wartości wysyłanego bitu i wysyła spolaryzowany foton kanałem kwantowym. Ciąg wysyłanych bitów też może być losowy, jest to nawet wskazane ze względów bezpieczeństwa. Bob, dla każdego odebranego fotonu wybiera losowo bazę do odczytu i odczytuje polaryzację, a tym samym wartość bitową. Następnie wysyła (kanałem publicznym) listę wybranych przez siebie baz. Wyniki odczytu zachowuje w tajemnicy. Alice wybiera jako poprawne tylko te fotony, dla których występuje zgodność baz jej i Boba i kanałem publicznym informuje o tym Boba, które bazy zostały wybrane poprawnie. Wybór jednakowych baz jest spowodowany tym, że tylko zgodne bazy gwarantują, że Bob odbierze to, co Alice wyśle. Różne bazy wywołają kwantowy efekt losowości, gdzie Alice wysyła „1” a Bob odczytuje „0”. Bob, kasuje niepoprawne bity, a pozostałe (poprawne) są traktowane jako klucz szyfrujący.

Ryc. 2 Przykład transmisji niepodsłuchiwanej [2]

Wszystko fajnie, ale gdzie tu kwantowa innowacyjność?

Załóżmy, że ktoś podsłuchuje, włącza się do transmisji, odczytuje fotony (bity) wysyłane przez Alice i następnie przesyła dalej do Boba. Niech się nazywa Ewa. Ewa nie zna bazy wybranej przez Alice więc musi zgadywać, dokonując odczytu za pomocą baz wygenerowanych losowo, które wcale nie muszą być zgodne z bazami Alice. Alice i Bob nie wiedzą o obecności Alice, ale mogą wykryć podsłuch metodami statystycznymi.

Prawidłowa i niepodsłuchiwana transmisja klucza powinna zawierać około 50% bitów pewnych, wybranych przez Alice na podstawie porównania baz, 25% bitów prawidłowych, mimo złego wyboru bazy przez Boba i 25% bitów nieprawidłowych. Aby wykryć podsłuch, wybiera się pewien ciąg fotonów, na które Bob i Alice nałożyli te same bazy, i sprawdza się, czy uzyskano te same wyniki. Jeśli przynajmniej dla jednego fotonu uzyskano różne wyniki mimo nałożenia tych samych baz, to oznacza to, że na łączu wystąpił podsłuch.[3]. Do wykrycia podsłuchu wystarczy sprawdzenie 10% bitów transmitowanego klucza, zakładając, że klucz jest długi. Skąd to założenie? Istnieje niezerowe prawdopodobieństwo, że Ewa przypadkiem wylosuje właściwe bazy, takie, jakich użyła Alice. Jednak wraz z długością klucza to prawdopodobieństwo maleje do wartości bliskich zera. A klucze szyfrujące są długie, gdyż są to przeważnie klucze jednorazowe o długości równej długości przesyłanego komunikatu. Oczywiście Ewa, podsłuchując kanał jawny, pozna niewielką część klucza użytego do kontroli transmisji, ale to nic nie szkodzi.

Ryc. 3 Przykład transmisji podsłuchiwanej [2]

Kwantowy generator liczb losowych

Zjawisko losowej zmiany polaryzacji fotonu po przepuszczeniu przez kryształ jest wykorzystywane do generowania liczb prawdziwie losowych. Dotychczas posługiwaliśmy sie generatorami liczb pseudolosowych, które są algorytmami komputerowymi obliczającymi ciągi liczb na podstawie zadanej z góry liczby zwanej seed (zarodek, ziarno). Określenie „pseudolosowy” jest tu całkowicie uzasadnione, ponieważ generator może z jednego ziarna wyprodukować tylko jeden ciąg liczb, a więc znając ziarno możemy przewidzieć każdy element ciągu liczb pseudolosowych. Pytani, skąd wziąć seed? Wartość seed może być narzucona arbitralnie przez programistę lub użytkownika lub pochodzić z kolejnego generatora liczb pseudolosowych. Krąg zamknięty. Nie znaczy to, że taki generator jest bezużyteczny. Jest przydatny do wielu zastosowań, rozkłady statystyczne są prawidłowe, ale jednak do zastosowań wymagających absolutnej losowości takie rozwiązanie jest, powiedzmy, średnio przydatne. Takim zastosowaniem jest kryptografia z kluczem jednorazowym, gdzie nieprzewidywalność wartości klucza jest warunkiem koniecznym zachowania bezpieczeństwa. Klucz taki byłby nie do złamania.

Artur Ekert i jego E91

Za ojca kryptografii kwantowej opartej na splątaniu kwantowym uważany jest Artur Ekert, polski profesor fizyki pracujący na co dzień w Oxford University, laureat wielu prestiżowych nagród, m.in. Medalu Maxwella, Nagrody Kartezjusza, Medalu Hughesa, a ostatnio Royal Society Milner Award and Lecture.

Profesor Ekert jest autorem jednego z najlepszych protokołów kwantowej dystrybucji klucza E91, który nowatorsko wykorzystuje zjawisko splątania kwantowego. Jest też jednym ze współtwórców opisywanego tu protokołu BB84.

Ryc. 4 Autorzy protokołu BB84: Charles H Bennett, Gilles Brassard i Artur Ekert.
Źródła: [1][4]

Praktyczne zastosowania QKD

Obecnie wiele ośrodków na świecie prowadzi prace rozwojowe nad komercyjnym zastosowaniem kwantowej dystrybucji kluczy szyfrujących. Jako ciekawostkę można podać przykłady takich nowatorskich zastosowań. W 2004 w Wiedniu wykonano pierwszy przelew bankowy z wykorzystaniem QKD. W szwajcarskim kantonie Genewa wyniki głosowania w wyborach krajowych 2007 przesłano z wykorzystaniem technologii kwantowej. System QKD zainstalowano również w campusie w Columbus w Ohio do przesyłania danych do zakładu produkcyjnego w pobliskim Dublinie.

Wystrzelona w sierpniu 2016 r. misja kosmiczna QUESS utworzyła międzynarodowy kanał QKD między Chinami a Instytutem Optyki Kwantowej i Informacji Kwantowej w Wiedniu – na odległość 7500 km, umożliwiając pierwszą międzykontynentalną bezpieczną kwantową rozmowę wideo. Razem z ośrodkami w Pekinie, Jinan, Hefei i Szanghajem tworzą pierwszą na świecie sieć kwantową przestrzeń kosmiczna-Ziemia.
Sieć liczy ponad 700 naziemnych węzłów optycznych połączonych z dwoma łączami Ziemia-satelita, które zapewniają kwantową dystrybucję klucza na łącznym dystansie 4600 kilometrów.

Ryc. 5 Pierwsza na świecie sieć kwantowa w Chinach.
Źródło: University of Science and Technology of China

W 2024 r. ESA planuje wystrzelenie satelity Eagle-1, eksperymentalnego kosmicznego systemu dystrybucji kluczy kwantowych.

Źródła:

  1. http://dydaktyka.fizyka.umk.pl/Pliki/Kryptografia_kwantowa.pdf
  2. https://home.agh.edu.pl/~kozlow/fizyka/kwantowa%20kryptografia/K.%20Mackowiak,%20krypt_kwant.pdf
  3. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-833e2748-3edf-4041-aa71-b49262ff7e90/c/sobota_ZNPSLOZ_74_2014.pdf
  4. https://www.merton.ox.ac.uk/news/professor-artur-ekert-milner-award
  5. https://www.eoportal.org/satellite-missions/quess#launch

Splątanie kwantowe, czyli coś, co działa, ale nie wiadomo dlaczego

Inne wpisy o powiązanej tematyce:

Kryptografia kwantowa, czyli w poszukiwaniu absolutu
Chaos, czyli efekt motyla
Miara wszechrzeczy, czyli pofilozofujmy
Liczby trochę mniejsze od nieskończoności

Czy fizyka jest nudna? Dla większości jest nudna, bo co jest ciekawego w równi pochyłej albo w prawie Archimedesa? Istnieją jednak dziedziny fizyki, które budzą szczególne zainteresowanie. Dotyczy to szczególnie zagadnień z pogranicza science-fiction, a wręcz zaprzeczających zdrowemu rozsądkowi: teoria względności, teoria kwantów, rozszczepienie atomu, nadprzewodnictwo czy fuzja jądrowa. Ostatnio na medialnym topie znalazło się splątanie kwantowe, wyróżnione (jeśli można tak powiedzieć o dziedzinie nauki) Nagrodą Nobla z fizyki za 2022 rok. Otrzymał ją profesor Anton Zeilinger [2], austriacki fizyk-teoretyk z Uniwersytetu Wiedeńskiego (na spółkę z Alainem Aspectem i Johnem F. Clauserem). Profesor Zeilinger jest doktorem honoris causa Uniwersytetu Gdańskiego. On i drugi z noblistów – Alain Aspect od lat współpracują z Międzynarodowym Centrum Teorii Technologii Kwantowych Uniwersytetu Gdańskiego.

Ryc. 1 Profesor Anton Zeilinger. Źródło: Austriacka Akademia Nauk

Czym jest splątanie kwantowe?

Najprościej można powiedzieć, że jeśli dwa obiekty kwantowe, na przykład atomy, po uprzednim schłodzeniu i przygotowaniu w odpowiednich stanach kwantowych, “zetkniemy” ze sobą w pewien szczególny sposób, pozwalając oddziaływać im elektromagnetycznie, poprzez wymianę fotonów lub pól kwantowych, a następnie rozdzielimy, to stają się jednym obiektem kwantowym, a wartość pomiaru wielkości kwantowej jednej cząstki jest ściśle skorelowana z wartością tej wielkości drugiej cząstki, niezależnie od dzielącej je odległości tak, aby stan układu (superpozycja) pozostał bez zmian.

Splątanie fotonów można uzyskać za pomocą kryształów nieliniowych (Ryc. 2). Wpuszczając do takiego kryształu jeden foton możemy uzyskać dwa fotony splątane, drgające w prostopadłych do siebie płaszczyznach. Następnie, za pomocą światłowodu, możemy oddalić te fotony na znaczną odległość i przeprowadzić pomiar.

“Niezależnie” rzeczywiście oznacza “niezależnie”, bo odległości mogą być kosmiczne a ich wpływ na efekt splątania – żaden. Mierząc stan cząstki, która mamy pod ręką “mierzymy”, natychmiast i zdalnie, stan cząstki praktycznie nieskończenie odległej. Czy to oznacza, że możemy przenosić informację z prędkością większą od prędkości światła? Niestety nie, tu nadal obowiązuje zasada wynikająca z równań Einsteina, że prędkość światła jest największą prędkością, jaką może osiągnąć materia lub energia. Obala to mit, że tą metodą możemy transmitować informację z nieskończoną prędkością. Można natomiast powiedzieć, że dokonujemy w pewnym sensie teleportacji informacji. Odczytując stan jednej cząstki po prostu wiemy, jaki jest stan drugiej cząstki. Na przykład para splątanych fotonów ma przeciwne polaryzacje. Przed dokonaniem pomiaru każdy foton jest w nieoznaczonym stanie kwantowym, zgodnie z zasadą nieoznaczoności Heisenberga. Przed pomiarem znamy stan całego układu (przeciwne polaryzacje fotonów), nie znając stanów składników tego układu (który foton drga w polaryzacji poziomej H, a który w pionowej V?). Układ ten jest jednym obiektem kwantowym. Dopiero sam fakt pomiaru pierwszego fotonu determinuje stan drugiego fotonu. Mówiąc inaczej, generując strumień par niesplątanych fotonów, wysyłając każdy foton z pary do innego obserwatora (A i B) i mierząc parami ich polaryzację otrzymamy zgodność polaryzacji fotonów A i B w 50% przypadków, co jest wynikiem intuicyjnie przewidywalnym. Jeśli natomiast fotony w każdej parze będą przed wysłaniem splątane, to korelacja będzie stuprocentowa.

Splątane fotony przed odczytem ich wartości splątania znajdują się w stanie tzw. superpozycji kwantowej, to znaczy, że posiadają jednocześnie wszystkie stany możliwe do odczytania. Przyjmując, że polaryzacja H oznacza 0 (zero), a polaryzacja V oznacza 1, splątane fotony mają jednocześnie wartość 0 i 1. Dopiero sam akt odczytu (jednego fotonu) determinuje ostatecznie wartości polaryzacji obu fotonów.

Pierwsze doświadczenia splątania kwantowego przeprowadzono w 1972 roku, a w 1998 zespół Nicolasa Gisina z Genewy wytworzył i utrzymał splątanie pary fotonów po przesłaniu na odległość 10 km. Wspomniany wcześniej Anton Zeilinger utrzymał splątanie fotonów odległych o 144 kilometry. Obecnie splątanie realizuje się na odległości liczone w tysiącach kilometrów, między Ziemią a wyspecjalizowanymi satelitami. O tym będzie później, przy okazji opisu kwantowej dystrybucji klucza szyfrującego (QKD).

Idea splątania kwantowego doprowadziła grupę włoskich fizyków z turyńskiego Narodowego Instytutu Badań Meteorologicznych (INRiM) do wniosku, że czas jest złudzeniem i zaczyna biec dopiero po interakcji obserwatora z (umownym) zegarem. Jest to wniosek filozoficzny, niepoparty dowodem matematycznym, a tym bardziej doświadczeniem, ale należy przyznać, że jego piękno jest niezaprzeczalne.

Trochę historii

Wszystko zaczęło się od Alberta Einsteina. W 1935 roku opublikował on, wspólnie z Borysem Podolskim i Nathanem Rosenem pracę mającą dowieść, że mechanika kwantowa nie jest teorią kompletną. Powszechnie bowiem wiadomo, że Einstein był wrogiem teorii kwantowej, a szczególnie jej interpretacji probabilistycznej. Mawiał nawet, że “Bóg nie gra w kości”. W wyniku przeprowadzonego eksperymentu myślowego zwanego paradoksem EPR (Einsteina-Podolskiego-Rosena) pokazano na gruncie matematycznym mechaniki kwantowej, że w pewnych sytuacjach cząstki kwantowe powinny natychmiast reagować na zmianę stanu swojego splątanego partnera, nawet jeśli ten znajduje się w dowolnie dużej odległości. Przeczyłoby to aksjomatowi, że informacja nie może być przekazywana z prędkością większą od prędkości światła. „Księżyc istnieje także wtedy, gdy na niego nie patrzę”, mawiał Einstein i nazwał splątanie „upiornym oddziaływaniem na odległość”. Inny fizyk teoretyczny, jeden z ojców-założycieli mechaniki kwantowej, Erwin Schrödinger (ten od kota), zainspirowany eksperymentem myślowym EPR, jako pierwszy wprowadził termin „splątanie” i stwierdził, że wiedza o układzie fizycznym (na przykład dwa splątane fotony) nie oznacza wiedzy o jego częściach (poszczególnych fotonach). Było to prorocze spostrzeżenie, docenione dopiero pod koniec XX wieku.

Ryc. 2 Ilustracja splątania fotonów po przejściu przez kryształ o nieliniowej charakterystyce.
(Wikimedia Commons/J-Wiki [GNU Free Documentation License – domena publiczna])

Natura splątania kwantowego

Naturę splątania kwantowego próbował wyjaśnić Einstein, wprowadzając pojęcie zmiennych ukrytych czyli informacji zawartych w fotonach przed osiągnięciem stanu splątanego. Te właśnie zmienne ukryte miałyby oddziaływać później na splątane fotony. Teoria ta została obalona przez Johna Stewarta Bella, który sformułował w 1964 twierdzenie (zwane nierównościami Bella) mówiące, że “Żadna lokalna teoria zmiennych ukrytych nie może opisać wszystkich zjawisk mechaniki kwantowej.”.

Najciekawszą teorią tłumaczącą stan splątania kwantowego, bazującą na pracy Stephena Hawkinga z 1964 roku o tym, że czarne dziury wcale nie są takie “czarne” i emitują promieniowanie, jest hipoteza równoważności splątania kwantowego z tunelami czasoprzestrzennymi, tzw. tunelami Einsteina-Rosena. Oba wymienione pojęcia wynikają wprost z dwóch artykułów Alberta Einsteina z 1935 roku, ale Einstein nawet nie podejrzewał, że mogą być one ze sobą powiązane. Tunele czasoprzestrzenne wynikają z jednego z rozwiązań równań Einsteina zaproponowanego przez niemieckiego fizyka Karla Schwarzschilda, genialnego, przedwcześnie i tragicznie zmarłego geniusza. Rozwiązanie było na tyle dziwne, że dopiero w latach 60. XX wieku zorientowano się, że opisuje ono tunel czasoprzestrzenny łączący dwie czarne dziury. Juan Macaldena [1], fizyk teoretyczny z Princeton uważa, że dzięki splątaniu kwantowemu tworzy się geometryczne połączenie między dwoma czarnymi dziurami, które poprzez swoje wnętrze tworzą tunel czasoprzestrzenny. Dwie czarne dziury, wyglądające z zewnątrz jak dwa niezależne obiekty, w rzeczywistości mają wspólne wnętrze. Oczywiście użyte pojęcie “geometryczny” nie oznacza naszej zwykłej geometrii trójwymiarowej ale wymiarów wyższych, w których nasz trójwymiarowy Wszechświat jest zanurzony.

Splątanie kwantowe w praktyce

Obiecującym zastosowaniem splątania kwantowego jest kryptografia kwantowa, a konkretnie bezpieczna dystrybucja kluczy kryptograficznych. Odbywa się to za pomocą satelity, który generuje klucz i rozsyła go laserowo do odbiorców. Specyfika splątania gwarantuje 100% zabezpieczenie przed podsłuchem lub sfałszowaniem, gdyż każda próba ingerencji, na przykład odczyt albo zmiana treści, w wysyłaną wiązkę fotonów spowoduje niejako zniszczenie zawartej w niej informacji. Elementem protokołu jest informacja kontrolna, której pozytywna weryfikacja gwarantuje brak ingerencji w przesyłany strumień informacji, co oznacza, że nie nastąpił podsłuch transmisji. Po pomyślnej weryfikacji w węźle odbiorczym, uzyskujemy (wynikającą z praw mechaniki kwantowej) gwarancję poufności klucza.

Kwantowa dystrybucja klucza (Quantum Key Distribution QKD) powoli staje się pełnoprawnym elementem ekosystemu szyfrowania danych. W dalszym ciągu kanał przesyłania danych jest klasycznym kanałem cyfrowym a kanał dystrybucji klucza szyfrującego jest kanałem kwantowym. Należy odnotować znaczny wkład polskich badaczy w rozwój QKD. Najdłuższe w Europie łącze QKD jest właśnie testowane między Poznaniem a Warszawą. Jeden z najlepszych protokołów QKD wykorzystujących splątanie fotonów o nazwie E91 jest dziełem polskiego fizyka Artura Ekerta.

Źródła:

Równoważność splątania kwantowego i tuneli czasoprzestrzennych
https://www.projektpulsar.pl/struktura/2161853,1,splatanie-i-tunele-czasoprzestrzenne-faktycznie-sa-rownowazne.read

Wywiad z Antonem Zellingerem https://wyborcza.pl/7,75400,5801859,o-dziwacznych-prawach-mechaniki-kwantowej-opowiada-guru.html

Wywiady z noblistami 2022
https://optics.org/news/13/10/6

Intercontinental, Quantum-Encrypted Messaging and Video

https://physics.aps.org/articles/v11/7

Global quantum internet dawns, thanks to China’s Micius satellite

https://newatlas.com/micius-quantum-internet-encryption/53102/?itm_source=newatlas&itm_medium=article-body

Czy fizyka nicości leży u podstaw wszystkiego?

https://przystaneknauka.us.edu.pl/artykul/czy-fizyka-nicosci-lezy-u-podstaw-wszystkiego

https://space24.pl/satelity/splatanie-kwantowe-z-poziomu-nanosatelity-nowy-rozdzial-badan-analiza