O złocie, żółci, chlorze i wielowymiarowości kolorów

Lucas Bergowsky wytłumaczył tu niedawno, dlaczego złoto jest złote. Dzięki temu dowiedzieliśmy się, że złoto zawdzięcza swój unikatowy kolor efektom relatywistycznym. Sprawa koloru złota ma jednak również inne aspekty, w tym biologiczny, kognitywny i językoznawczy.

Jak postrzegamy kolory i jak nas oko łudzi

Zacznijmy od biologii. Podobnie jak pozostałe małpy wąskonose (i niezależnie od nich niektóre szerokonose) Homo sapiens może się poszczycić widzeniem trichromatycznym, korzystającym z trzech receptorów barw: przestrzeń rozpoznawalnych przez nas kolorów jest dzięki temu trójwymiarowa, a nie dwuwymiarowa, jak u innych łożyskowców (trichromatyzm występuje również u części torbaczy). Mimo to jesteśmy kalekami w porównaniu z większością pozostałych kręgowców. Ich wspólny przodek miał widzenie tetrachromatyczne (czteroreceptorowe), zachowane u większości linii potomnych – bezszczękowców, ryb, płazów, gadów i ptaków. Wczesne ssaki prawdopodobnie straciły jeden z odziedziczonych receptorów, a u przodków stekowców oraz (niezależnie) torbaczy i łożyskowców zanikł jeden z pozostałych. Zwykle tłumaczy się to nocnym trybem życia mezozoicznych ssaków. Przy słabym świetle wyraźne widzenie barw nie ma wielkiego znaczenia dla przeżycia i sukcesu reprodukcyjnego, dlatego przypadkowe mutacje uszkadzające geny kodujące receptory barw nie były surowo karane przez dobór naturalny i mogły się utrwalić w populacji naszych dalekich przodków, żyjących w cieniu wielkich dinozaurów.

Można tu i ówdzie przeczytać w popularnych źródłach, że ludzkie oko analizuje barwy w systemie RGB, czyli że w czopkach (komórkach siatkówki oka odpowiedzialnych za rozróżnianie barw), występują receptory wrażliwe na czerwień (red), zieleń (green) i kolor niebieski (blue). Trzeba sprostować tę informację. Oto co się stało i co z tego wynikło.

Przodek naczelnych miał dwa pigmenty wzrokowe wybiórczo wrażliwe na barwy. Były to światłoczułe białka nazywane SWS1 (short-wave sensitive) i LWS (long-wave sensitive). Każde z nich reagowało na dość szeroki zakres długości fal elektromagnetycznych. Białko SWS1 było pobudzane przez fale o długości ok. 355–445 nm, a LWS – ok. 500–570 nm. Pierwszy zakres odpowiada mniej więcej monochromatycznemu światłu fioletowemu (ale zahacza też o nadfiolet), a drugi – zielonemu. Nie oznacza to, że posiadacze takich receptorów widzą tylko fiolet i zieleń. Ich oko i mózg rozpoznają np. kolor niebieski jako światło, które silniej pobudza receptor SWS1 niż receptor LWS, a kolor żółty jako światło, które dość silnie pobudza LWS, ale na które zupełnie nie reaguje SWS1. Brak im jednak receptorów, które umożliwiłyby na przykład zróżnicowanie reakcji na odcienie od ciepłej zieleni przez barwy żółtą i pomarańczową do czerwonej.

U przodka małp wąskonosych gen kodujący receptor LWS (położony na chromosomie płciowym X)1 uległ przypadkowej duplikacji, po czym każda z kopii zaczęła ewoluować niezależnie. Kilka drobnych mutacji doprowadziło do tego, że dziś białka receptorowe kodowane przez każdą z kopii różnią się trzema spośród 364 aminokwasów. To z pozoru niewiele (białka są identyczne w 99,2%), ale ta drobna różnica ma znaczenie dla ich światłoczułości. Wskutek tego oko ludzkie zawiera trzy receptory wrażliwe na następujące długości fali świetlnej: S (krótkie), M (średnie) i L (długie). M i L powstały wskutek wspomnianej wyżej duplikacji, natomiast S kontynuuje wprost dawne SWS1, odziedziczone po przodkach kręgowców. S reaguje najsilniej na fale o długości ok. 420 nm (fiolet), M – ok. 530 nm (chłodna zieleń wpadająca w cyjan), a L – ok. 560 nm (ciepła zieleń wpadająca w żółć). Zauważmy, że nie posiadamy białka wyspecjalizowanego w reagowaniu na czerwień (zakres 625–740 nm). Skąd zatem mózg wie, że światło docierające do oka jest czerwone? Dlatego, że zakres wrażliwości receptora L sięga aż po granicę widzialności światła długofalowego, natomiast wrażliwość M szybko spada w zakresie odpowiadającym barwie pomarańczowej. Zatem czerwień (w odróżnieniu od żółci czy zieleni) pobudza niemal wyłącznie receptor L, podczas gdy np. dla barwy żółtozielonej L pobudzany jest maksymalnie, ale M również silnie. Porównując te reakcje, mózg kalkuluje, z jakim światłem ma do czynienia.

Ryc. 1.

W ogóle barwy od zielonej do żółtej najintensywniej oddziałują na ludzkie oko, bo pobudzają jednocześnie dwa blisko spokrewnione receptory. Złoto znakomicie odbija światło żółte, pomarańczowe i czerwone, a także promieniowanie podczerwone, nieco słabiej światło zielone, a najsłabiej – niebieskie i fioletowe. Choć zatem odbite od złota światło zbliżone do białego, np. słoneczne, jest mieszaniną dużego zakresu długości fal, receptory M i L reagują tak samo, jak gdyby to światło monochromatyczne pomarańczowożółte (ok. 590 nm).

Trzeba pamiętać, że oko nie odróżnia barw monochromatycznych od mieszanki światła o różnej długości fal wywołującej taki sam efekt fizjologiczny. Dlatego dajemy się oszukać monitorom kolorowym, stwarzającym np. iluzję barwy żółtej przez addytywne mieszanie światła czerwonego i zielonego (emitowanego przez dwa spośród trzech subpikseli składających się na każdy element obrazu). Istnieją barwy mieszane, którym nie odpowiada żadna długość fali światła monochromatycznego. Łącząc w równych proporcjach światło czerwone i niebieskie, otrzymujemy kolor purpurowy, który nasz mózg odbiera jako naturalne domknięcie „koła barw” między czerwienią a fioletem. Pobudzane są wtedy receptory L i S z pominięciem M, a przecież żadna „czysta” fala elektromagnetyczna o określonej długości nie mogłaby wywołać takiego efektu. Dlatego percepcji koloru nie można utożsamiać wprost z fizycznymi parametrami fali świetlnej.

Ryc. 2.

A zatem złoto nie jest w zasadzie żółte w sensie fizycznym. Odbite of niego światło stanowi kontinuum odcieni żółtych, pomarańczowych i czerwonych z niejaką domieszką zieleni (nie wspominając o niewidzialnych odcieniach podczerwieni). Z percepcyjnego punktu widzenia ta mieszanka jest jednak równoważna barwie pomarańczowożółtej, na którą oko i mózg (interpretujący „odczyty” receptorów siatkówki) zareagowałyby tak samo. Ekran komputera lub telewizora wywołuje ten sam efekt, mieszając światło czerwone i zielone w stosunku 255 : 215 (bez dodawania barwy niebieskiej).

Widzenie barw a ewolucja nazw kolorów

Zważywszy, że charakterystyki pobudzenia receptorów M i L w znacznym stopniu nakładają się na siebie, trudno się dziwić, że są języki, w których kolor żółty i zielony (a przynajmniej jego ciepłe odcienie) są zaliczane do tej samej „barwy podstawowej” określanej za pomocą jednego słowa. Tak jest np. w języku kwaḱwala (kwakiutl) z rodziny wakaszańskiej, używanym nad Cieśniną Królowej Charlotty w zachodniej Kanadzie. Słowo łanxa [ɬənχa] oznacza w nim zarówno kolor zielony, jak i żółty. Podobnie w starożytnym języku akadyjskim z rodziny semickiej (Mezopotamia) przymiotnik warqum [warkʼum] odnosił się do obu kolorów.

Nie inaczej było w języku praindoeuropejskim. Istniał w nim rdzeń leksykalny *ǵʰelh₃-.1 Zachował się on w językach bałtyjskich w funkcji czasownika o znaczeniu ‘zazielenić się’ (litewskie žélti, łotewskie zelt), można więc sądzić, że pochodzące od niego rzeczowniki i przymiotniki odnosiły się pierwotnie do koloru młodej roślinności, a może też niedojrzałych owoców (nie tylko w języku polskich zwanych „zielonymi”, niekoniecznie w zgodzie ze stanem faktycznym). Weźmy na przykład derywat przymiotnikowy *ǵʰl̥h₃-ró- (z tzw. stopniem zanikowym rdzenia: wskutek utraty samogłoski spółgłoska *l stała się sylabiczna). Rozwinął się on w klasyczne greckie kʰlōrós, słowo oznaczające różne odcienie zielonego, ale także kolor miodu lub piasku, zatem pokrywające się znaczeniowo z naszą koncepcją koloru zarówno zielonego, jak i żółtego. Przymiotnika tego, po konsultacji z kolegami, użył sir Humphry Davy w roku 1810, aby nazwać nowo odkryty pierwiastek, żółtozielony gaz – chlor (angielskie chlorine).

Ryc. 3.

Losy spółgłoski *ǵʰ w językach potomnych były dość skomplikowane, bo ona sama miała skomplikowaną artykulację. Była spalatalizowana (zmiękczona) w porównaniu ze „zwykłym” *g, a jednocześnie wymawiana z przydechem (dźwięcznym, a zatem należała do tzw. spółgłosek „dyszących”). Oprócz starogreckiego jej refleksami były np. łacińskie h (na początku wyrazu) i pragermańskie *g (z utratą przydechu). W językach bałtosłowiańskich i indoirańskich palatalność zaczęła dominować nad tylnojęzykowym charakterem *ǵʰ, czego skutkiem był jej rozwój w spółgłoskę zwartoszczelinową *dźʰ. Przydech zachował się w językach indoaryjskich (w sanskrycie *dźʰ zmieniło się w dźwięczne h [ɦ]), znikł natomiast w irańskich (rezultatem było np. staroperskie d, awestyjskie z) i w bałtosłowiańskich, gdzie z * powstało litewskie ž [ʒ] oraz łotewskie, staropruskie i słowiańskie [z]. Była też drobna komplikacja: w linii prowadzącej do języków bałtosłowiańskich w stopniu zanikowym morfemu *ǵʰelh₃-, czyli *ǵʰl̥h₃-, spółgłoska początkowa w pozycji przed slylabicznym * mogła utracić palatalność, czyli ulec stwardnieniu, zmieniając się w *, a następnie (po utracie przydechu) w *g. Wrócimy jeszcze do tego faktu.

Tymczasem jednak zawieśmy na chwilę wątek bałtosłowiański i spójrzmy na języki germańskie, gdzie zachował się m.in. przymiotnik *ǵʰelh₃-wó- > pragermańskie *gelwa- ‘żółty’ (Germanie dorobili się nowego, wyspecjalizowanego przymiotnika o znaczeniu ‘zielony’, więc znaczenie starej nazwy koloru uległo zawężeniu). Jego refleksem było staroangielskie ġeolu (dopełniacz ġeolwes). Kropka nad g oznacza, że w tej pozycji (przed samogłoską przednią) spółgłoska staroangielska uległa zmiękczeniu i zaczęła być wymawiana jako [j] – dlatego dzisiaj ta nazwa koloru brzmi yellow (ale w niemieckim mamy gelb). Istniał też inny pokrewny wyraz, przymiotnik odczasownikowy: *ǵʰl̥h₃-tó- (o pierwotnym znaczeniu ‘zmieniający kolor na zielony/żółty’). Można go było przerobić na rzeczownik (rodzaju nijakiego), przesuwając akcent na pierwszą sylabę: *ǵʰĺ̥h₃tom ‘coś zielonego/żółtego’. Po utworzeniu tego słowa zadziałały charakterystyczne pragermańskie zmiany spółgłosek, określane zbiorowo jako prawo Grimma, oraz kilka innych regularnych zmian. Ich rezultatem było pragermańskie *gulþą > staroangielskie gold (i niemieckie Gold). Tu, w pozycji przed samogłoską tylną, zmiękczenie nie zaszło. Zapamiętajmy zatem, że germańskie złoto to ‘coś żółtego, żółty metal’.

W językach bałtosłowiańskich przymiotnik *ǵʰl̥h₃-tó- utrzymał się, ewoluując w *gl̥Hto- (ze wspomnianym wyżej stwardnieniem), a następnie *gilHta- (ze specyficznie bałtosłowiańskim rozwojem spółgłoski sylabicznej w sekwencję *il). W języku prasłowiańskim *g uległo zmiękczeniu przed *i i powstała forma *žьltъ, będąca przodkiem polskiego słowa żółty. A zatem żółty i angielskie gold różniły się kiedyś tylko miejscem akcentowania, ponieważ jedno z nich było przymiotnikiem, a drugie – utworzonym od tego przymiotnika rzeczownikiem.

Przodkowie Bałtosłowian także utworzyli pokrewny rzeczownik rodzaju nijakiego od przymiotnika *ǵʰl̥h₃tó-, ale w odrobinę inny sposób niż ich pragermańscy krewni. Wstawili mianowicie wewnątrz rdzenia samogłoskę *o. Powstała w ten sposób forma *ǵʰolh₃tom, która rozwinęła się regularnie w prasłowiańskie *zolto (tym razem bez stwardnienia początkowej spółgłoski, bo nie zachodziło ono przed samogłoską). Regularnym refleksem formy prasłowiańskiej jest polskie złoto. A zatem – podsumowując – złoto jest bliskim krewnym angielskiego gold. Oba zostały urobione od tego samego prajęzykowego przymiotnika, zachowanego zresztą w polskim jako żółty.

Na tym jednak nie koniec, bo rdzeń *ǵʰelh₃- (czyli bałtosłowiańskie *dźelH- > słowiańskie *zel-) pozostał także produktywnym źródłem słów oznaczających kolor zielony i różne zielone obiekty. Wystarczy wspomnieć prasłowiańskie *zelenъ > polskie zielony albo rzeczownik zbiorowy *zelьje ‘masa zieleni’ > polskie ziele. A zatem nazwy kolorów zielonego i żółtego, choć różne, pozostają w naszym języku spokrewnione, podobnie jak geny kodujące receptory M i L. Od tego samego rdzenia mamy też nazwę żółci (nie koloru, ale substancji produkowanej przez woreczek żółciowy). Występuje ona w językach słowiańskich w dwóch wariantach, *zьlčь i *žьlčь wskutek nieco nieregularnego rozwoju spowodowanego kontaminacją (wpływem skojarzeniowym wyrazów bliskoznacznych) lub odpodobnieniem fonetycznym spółgłosek trudnych do wymawiania w bliskim sąsiedztwie. Z obu tych powodów *žьlčь dało w polskim żółć zamiast oczekiwanego *żółcz (nazwę wydzieliny skojarzono z rzeczownikiem abstrakcyjnym oznaczającym ‘kolor żółty’).

Listę wyrazów pokrewnych oznaczających rozmaite rzeczy żółte i zielone w językach indoeuropejskich można by było ciągnąć jeszcze długo. Ograniczę się tylko do przykładu z języków indoirańskich: mamy staroindyjskie híraṇyam, staroperskie daranija i awestyjskie zarańiiəm. Wszystkie one pochodzą od praindoirańskiego *dźʰr̥Hanyam < *ǵʰl̥h₃-en-jo-m. Obok nich istniał przymiotnik *ǵʰolh₃-i- lub *ǵʰelh₃-i- > indoirańskie *dźʰarHi- > staroindyjskie hari- ‘zielony/żółty’ (także ‘płowy’ lub ‘brązowy’). Stąd pochodzi współczesne perskie zar ‘złoto’.

Ta językowa gra kolorów z udziałem zieleni, żółci i złota jest ciekawą konsekwencją faktu, że około 30 mln lat temu u przodka małp wąskonosych zduplikował się pewien gen na chromosomie X, oraz tego, że nasz mózg dysponuje bardzo niepełną informacją o składzie światła padającego na siatkówkę oka. Do tego dołożyły się oczywiście efekty relatywistyczne zachodzące na zewnętrznej powłoce elektronowej atomu złota.

Przypisy

1) Ma to podstawowe znaczenie dla zrozumienia, dlaczego mężczyźni wielokrotnie częściej niż kobiety bywają dotknięci zaburzeniami widzenia barw. Każda kobieta ma dwa chromosomy X, a zatem dodatkowe kopie genów kodujących receptory M i L. Jeśli nawet któryś z nich ulegnie uszkodzeniu, pozostaje jego w pełni funkcjonalny odpowiednik na drugim chromosomie X. Mężczyzna, jako posiadacz tylko jednego chromosomu X, nie ma „kopii zapasowej”, która mogłaby zastąpić wadliwy gen.
2)
*h₃ było jedną z tzw. spółgłosek laryngalnych (oznaczanych *h₁, *h₂, *h₃), których dokładna wymowa pozostaje dyskusyjna i nie musi nas tu interesować. Wystarczy wiedzieć, że była to tylnojęzykowa spółgłoska szczelinowa, która w większości języków indoeuropejskich zanikła, pozostawiając tu i ówdzie ślady swojej obecności w postaci wpływu na sąsiednie głoski. W prezentowanych tu rekonstrukcjach bałtosłowiańskich i indoirańskich *H oznacza taki fonetyczny ślad dawnej spółgłoski laryngalnej.
3) O tym, czym były i jak brzmiały samogłoski *ь i *ъ, czyli tzw. prasłowiańskie jery, pisałem tutaj.

Opisy ilustracji

Ryc. 1: Znormalizowany wykres reakcji ludzkich receptorów S, M i L na światło o różnej długości fali (w nanometrach). Autor: Vanessaezekowitz. Źródło: Wikipedia (licencja CC BY 3.0).
Ryc. 2: Powiększenie fragmentu ekranu laptopa z ikonką aplikacji MS Word. Widoczne są subpiksele odpowiedzialne za mieszanie barw. Wrażenie koloru białego i odcieni szarości powstaje wskutek addytywnego składania barwy czerwonej, zielonej i niebieskiej w równych proporcjach. Foto: Piotr Gąsiorowski.
Ryc. 3: Młode liście dębu szypułkowego (Quercus robur). Foto: Dimìtar Nàydenov. Żródło: Wikipedia (licencja CC BY-SA 4.0).

Co zawdzięczamy wirusom (2): bakteriofagi, czyli wielopoziomowa gra strategiczna

Inne wpisy z tej serii:
Co zawdzięczamy wirusom (1): kilka pytań fundamentalnych
Co zawdzięczamy wirusom (3): podstępni włamywacze, czyli wirusy w stylu retro
Co zawdzięczamy wirusom (4): dygresja o naszym genomie i ukrytych w nim wirusach
Co zawdzięczamy wirusom (5): nie ma tego złego, co by na dobre nie wyszło
Co zawdzięczamy wirusom (6): nowy obraz ewolucji życia

Nasz superorganizm

Według najnowszych oszacowań organizm zdrowego dorosłego człowieka zawiera mikrobiotę, na którą składa się średnio około 3,9 ∙ 1013 (39 bilionów) jednokomórkowych mikroorganizmów. Są wśród nich archeowce i eukarionty, ale znakomita większość naszej mikrobioty to bakterie. Jest ich kilkaset razy więcej niż wszystkich pozostałych drobnoustrojów razem wziętych. Powyższa liczba jest nieco większa niż szacowana liczba naszych własnych, ludzkich komórek, a jeśli weźmiemy pod uwagę, że ok. 84% komórek ludzkiego ciała to czerwone krwinki, w których zanika jądro wraz z DNA, to my, ludzie (Homo sapiens) jesteśmy szczęśliwymi posiadaczami (a raczej gospodarzami) genomów bakteryjnych w liczbie mniej więcej dziesięciokrotnie przewyższającej liczbę kopii naszego własnego genomu.

Co więcej, o ile ludzkie komórki zawierają niemal stuprocentowo identyczne, bliźniacze zestawy genów, to liczba gatunków mikroorganizmów, które nas zamieszkują, sięga grubych tysięcy, a genom każdego z nich jest inny. Oznacza to dostęp do ogromnego bogactwa produktów genów bakteryjnych, których nasz organizm nie byłby w stanie syntetyzować samodzielnie. Genom ludzki zawiera ok. 20 tysięcy genów. „Superorganizm”, na który składają się także wszyscy nasi mali towarzysze, ma potencjalnie do dyspozycji wiele milionów różnych genów. Niektóre związki syntetyzowane dzięki nim przez bakterie mają zasadnicze znaczenie dla prawidłowego funkcjonowania na przykład ludzkiego układu odpornościowego, a także naszego ulubionego narządu – mózgu. Mikroorganizmy żyjące na naszej skórze i na błonach śluzowych, w jamie ustnej, w układzie moczowo-płciowym, a przede wszystkim w jelitach, gdzie rezyduje ich przytłaczająca większość, są z reguły nie pasożytami, ale komensalami lub symbiontami. Wciąż wiemy stosunkowo niewiele o szczegółach tej symbiozy, ale jedno jest oczywiste: bogata i urozmaicona mikrobiota wydatnie zwiększa szanse na długie i zdrowe życie. Bez bakteryjnych symbiontów, które zaczynają kolonizować organizm noworodka już w pierwszych godzinach i dniach po narodzinach, nie pociągnęlibyśmy długo.

Ale to nie wszystko. Jak w każdym ekosystemie zamieszkanym przez bakterie można w naszej mikrobiocie znaleźć także wirusy infekujące jej członków. Te wirusy to bakteriofagi (dla przyjaciół w skrócie „fagi”), ze względu na właściwości i pochodzenie ewolucyjne dzielone na kilka grup. Ok. 96% z nich należy do klasy Caudoviricetes, czyli „fagów z ogonkami”, w ogóle największej ze znanych grup wirusów na tym poziomie taksonomicznym.1 Jest to niezwykle starożytny klad, koewoluujący z bakteriami od zarania dziejów życia na Ziemi.2 Ze zrozumiałych względów ludzie interesują się fagami mniej niż wirusami atakującymi zwierzęta, a jednak każdy z nas nosi w sobie mniej więcej dziesięć razy więcej fagów niż bakterii. Jest ich kilkaset bilionów.3 Choć ich łączna masa nie przekracza pół grama, każdy z nich wyposażony jest w genom: w przypadku Caudoviricetes jest to dwuniciowe DNA o długości od kilkunastu tysięcy do ponad pół miliona nukleotydów. I nie jest dla nas bynajmniej obojętne, co siedzi w tych genomach. Mówiąc więc o ludzkiej mikrobiocie i jej zdrowiu, nie wolno zapominać o bakteriofagach.

Fagi i ich bakterie

Jako się rzekło, fagi i bakterie żyją razem w układzie pasożyt–gospodarz od kilku miliardów lat. Jedne i drugie mają się na Ziemi znakomicie, co oznacza, że jest to układ oparty na stabilnych strategiach ewolucyjnych. W interesie bakteriofagów nie leżałoby całkowite wyniszczenia bakterii (wymarłyby także razem ze swoimi ofiarami), a z kolei bakterie nie są wobec fagów całkowicie bezbronne. Bakteryjny system obrony antywirusowej potrafi rozpoznawać przynajmniej niektóre fagi i blokować ich replikację. Oczywiście fagi starają się oszukać ten system i tak toczy się odwieczny wyścig zbrojeń zwany koewolucją. Na tym jednak nie koniec. Pasożytnictwo może ewoluować w symbiozę przynoszącą korzyść obu stronom. Wiąże się to ze zdolnością fagów do wchodzenia w tzw. cykl lizogeniczny: fag włącza swoje DNA (zwane profagiem) do genomu bakterii. Gdy bakteria rozmnaża się przez podział, profag replikowany jest razem z resztą genomu i rozmnaża się także, nie zabijając komórek żywicielskich. Dlaczego nie ulegają przy tym ekspresji geny kodujące składniki wirusa, dzięki czemu możliwy byłby „montaż” i wydostanie się z komórki gotowych wirionów? Bo sam profag koduje czynnik hamujący transkrypcję tych genów, tzw. represor.

Ryc. 1.

Bakteria odnosi korzyść z tego rodzaju łagodnej infekcji. Po pierwsze – obecność represora powoduje, że bakteria staje się odporna na infekcje tym samym lub blisko spokrewnionym szczepem faga, blokując jego zdolność do niekontrolowanego namnażania się w jej wętrzu. Po drugie – może użyć swojego faga jako broni biologicznej przeciwko bakteriom konkurencyjnym. Jeśli mamy krewniaczą społeczność bakterii wyposażoną w profagi danego typu, zdarza się (spontanicznie lub pod wpływem stresów środowiskowych), że w niektórych komórkach bakteryjnych działanie represora ustaje i wirus przechodzi w odmienny tryb działania: cykl lityczny. Komórka syntetyzuje jego składniki, tworzą się z nich liczne wiriony, bakteria umiera i rozpada się, uwalniając fagi w postaci zdolnej do zjadliwego zakażania. Siostry i kuzynki bakterii, która właśnie zginęła, są nadal wyposażone w profaga, a zatem dość skutecznie zabezpieczone przed atakiem tych konkretnych wirusów. Pechowa bakteria, u której wirus się uaktywnił w sposób zjadliwy, ginie, ale jej ofiara nie idzie na marne, jeśli bakterie z konkurencyjnych szczepów, rywalizujących o te same zasoby, nie są nosicielami profaga i infekcja jest dla nich zabójcza. Bakteria „kamikaze” zwiększa sukces reprodukcyjny swojego DNA pośrednio, pomagając innym nosicielkom tego samego zestawu genów. A ponieważ w skład tego zestawu wchodzi profag, wirus również uczestniczy w tym sukcesie.

Zdarza się też, że profag traci zdolność powrotu do trybu litycznego i na stałe pozostaje składnikiem genomu swojego gospodarza. W ten sposób bakterie pozyskują geny wirusowe kodujące białka, które mogą się okazać użyteczne w nowych zastosowaniach. Jak zobaczymy w jednym z kolejnych wpisów, nie tylko bakterie zdobywają w ten sposób nowe, przydatne geny.

Prezenty dla gospodarza

Ciekawą klasą białek kodowanych przez profagi są te, które wpływają na zjadliwość bakterii pasożytniczych, pomagają bakteriom bronić się przed eukariotycznymi drapieżnikami lub niszczyć bakterie konkurujące o te same zasoby środowiska. Oprócz białkek pomagających bakteriom np. przyczepiać się do atakowanej komórki lub trawić jej ścianę, a także bakteriocyn hamujących wzrost bakterii pokrewnych, warto wspomnieć egzotoksyny – broń chemiczną, często o mocy piorunującej. Ekspresja takich genów jest regulowana przez osobne czynniki transkrypcyjne, zachodzi więc pomimo faktu, że ekspresja pozostałych genów wirusa jest powstrzymywana przez represor.

Pierwszym poznanym przykładem była toksyna maczugowca błonicy (Corynebacterium diphtheriae), odpowiedzialna za objawy chorobowe zakażenia tą bakterią. Produkuje ją maczugowiec, ale nie na podstawie własnego DNA, tylko genu tox zawartego w profagu – genomie korynefaga β, wirusa infekującego komórki maczugowca i pozostającego w nich w cyklu lizogenicznym. Dziesięć mikrogramów toksyny błoniczej to dla człowieka dawka śmiertelna. Jeszcze bardziej zabójcza trucizna o działaniu neurotoksycznym, botulina typu C1 lub D, potocznie znana jako botoks, kodowana jest z kolei w genomach kilku gatunków fagów, a produkowana w komórkach infekowanej przez nie laseczki jadu kiełbasianego (Clostridium botulinum). Inne dobrze znane bakterie uzbrajane w toksyny przez wirusy to np. przecinkowiec cholery (Vibrio cholerae), gronkowiec złocisty (Staphylococcus aureus) czy pałeczka ropy błękitnej (Pseudomonas aeruginosa). Choć zatem bakteriofagi nie atakują nas bezpośrednio, to nadają zjadliwość szczepom bakterii, które bez łagodnego zainfekowania fagiem nie byłyby dla nas niebezpieczne.

Sam bakteriofag nie używa kodowanych przez siebie toksyn dla własnych potrzeb, zapewne nie są one także jego oryginalnym wynalazkiem, tylko zostały przejęte w zamierzchłych czasach od dawniejszych bakteryjnych gospodarzy – na przykład pierwotnym źródłem protoplasty genu tox mogły być inne bakterie z typu promieniowców (Actinobacteria), do którego należy Corynebacterium. Jednak to wirus jest właścicielem patentu na aktualną wersję genu kodującego jad i można powiedzieć, że płaci nim za gościnę: zainfekowana bakteria staje się nie tylko odporna dla ponowne zakażenie tym samym wirusem, ale także wyposażona w naprawdę niebezpieczną broń masowego rażenia.

Przyjaciele i wrogowie naszych przyjaciół

Wspomniane bakterie nie są na szczęście normalnym składnikami naszej mikrobioty. Ponieważ jednak żyją w niej tysiące gatunków bakterii i – jak wskazują niedawno publikowane wyniki badań metagenomicznych – ok. 140 tys. gatunków bakteriofagów (z czego około połowa to wirusy wcześniej nieznane), a cykl lizogeniczny występuje wśród nich powszechnie, łatwo sobie wyobrazić, jak skomplikowane relacje wiążą wszystkich uczestników tego ekosystemu (z człowiekiem włącznie) i jak trudne jest zbadanie ich w szczegółach. Fagi – dzięki swojej zdolności do przełączania się z trybu litycznego na lizogeniczny i odwrotnie – są czynnikiem regulującym równowagę ekologiczną społeczności bakteryjnych. W zależności od sytuacji mogą pomagać bakteriom lub hamować wzrost ich populacji. Bakterie należące do różnych szczepów mogą także „walczyć na fagi”.

Ponieważ bakterie jelitowe są między innymi fabryką neuroprzekaźników, neuropeptydów czy cytokin, od których zależy prawidłowe funkcjonowanie centralnego układu nerwowego (jest to tzw. „oś mózgowo-jelitowa”, obecnie intensywnie badana), a z kolei fagi dynamicznie wpływają na populacje bakterii, to nasze procesy poznawcze, zmiany nastroju czy podatność na choroby neurodegeneracyjne pozostają w znacznym stopniu na łasce bakteriofagów. Podobnie rzecz się ma z układem odpornościowym, tym bardziej, że choć fagi nie atakują naszych komórek, to stale przenikają przez bariery anatomiczno-fizjologiczne do tkanek chronionych przed patogenami, między innymi do krwi, gdzie białka kapsydów wchodzą w bezpośredni kontakt z komórkami odpowiedzi immunologicznej. W tym przypadku udział bakterii jest zbędny. Czego przy okazji uczy się nasz układ odpornościowy i jakie to ma znaczenie dla naszego zdrowia, nie wiemy do końca.

Terapia fagowa?

Już w pierwszej połowie XX w. eksperymentowano z użyciem fagów do zwalczania bakterii chorobotwórczych wprost – na zasadzie „wróg mojego wroga jest moim przyjacielem”. Odkrycie antybiotyków spowodowało, że badania te zeszły na daleki plan. Idea terapii fagowej – w różnych wariantach, wykorzystujących potencjał wirusów na rozmaite, niekoniecznie oczywiste sposoby – wraca co pewien czas, ale w zasadzie nie wyszła poza fazę eksperymentów (Polska ma w tej dziedzinie niebagatelne osiągnięcia, o czym zapewne jeszcze będziemy mieli okazję napisać). Na przeszkodzie stoją między innymi luki w naszej wiedzy o sieci oddziaływań między fagami, bakteriami i organizmem zasiedlonym przez nie wszystkie. Im więcej o nich wiemy, tym bardziej oczywisty staje się także ogrom naszej niewiedzy. Można jednak mieć nadzieję, że w miarę postępu badań uda się pokonać te trudności. Już teraz fagi są za to wdzięcznymi obiektami badań dla inżynierii genetycznej. Można ich użyć na przykład w szczepionkach jako nośnika antygenów białkowych lub DNA kodującego białka patogenu. Te zastosowania są już całkowicie realne i zapewne będą stosowane w szczepionkach nowych generacji.

Spośród trojga laureatów nagrody Nobla z chemii w roku 2018 dwaj (Amerykanin George Smith i Brytyjczyk Gregory Winter) zostali nagrodzeni za rozwinięcie eleganckiej techniki kontrolowanej ewolucji białek „prezentowanych” na powierzchni bakteriofagów.4 Spośród miliardów molekuł namnażanych wraz z wirusami i modyfikowanych przez mutacje selekcjonuje się te o najbardziej pożądanych właściwościach. Metoda ta ma liczne zastosowania praktyczne, od medycznych (otrzymano w ten sposób stosowane już na dużą skalę leki na reumatoidalne zapalenie stawów i choroby autoimmunologiczne) po używanie bakteriofagów jako próbników molekularnych w testach diagnostycznych i katalizatorów w procesach biochemicznych.

Uwagi językowe

Terminy bakteriofag i fag stały się trochę niezręczne, odkąd zaczęliśmy się orientować w najgłębszych pokrewieństwach organizmów żywych. Archeowce (zwane też archeonami) nie są bakteriami w rozumieniu współczesnej systematyki, a wirusy, które je najczęściej atakują, należą w dużej części do specyficznych grup niezbyt podobnych do typowych wirusów bakteryjnych. Ponadto element -fag (z greckiego pʰágos ‘zjadacz, pożeracz’) niezbyt precyzyjnie określa to, co wirusy robią bakteriom. Być może rozsądniej byłoby mówić o bakteriowirusach, archeowirusach i eukariowirusach (co zresztą niektórzy specjaliści starają się robić). Tradycja ma jednak swoje prawa i zapewne „fagi” zostaną z nami jeszcze przez pewien czas.

Ryc. 2.

Przypisy

1) Oczywiście nie oznacza to, że inne grupy nie mają znaczenia. Jest ich kilka i odznaczają się wielką różnorodnością. Interesujące są na przykład archeowirusy, czyli wirusy specjalizujące się w infekowaniu archeowców – bardzo specyficzne, często wrzecionowate lub pałeczkowate. Ich badania rzucają ciekawe światło na przebieg najdawniejszej ewolucji wirusów.
2) Dalekimi krewnymi fagów z ogonkami (których część atakuje także archeowce) są herpeswirusy pasożytujące na zwierzętach (u człowieka wywołują one np. opryszczkę, półpasiec i ospę wietrzną).
3) Dla porównania: liczbę kopii wirusa SARS-CoV-2 w organizmie człowieka w szczytowej fazie zakażenia COVID-19 szacuje się na 109–1011, a łączną masę ich wirionów na 1–100 μg (milionowych części grama).
4) Trzecia laureatka, Frances Arnold (USA), otrzymała nagrodę za podobne osiągnięcia – kontrolowaną ewolucję enzymów, tyle że bez wykorzystania bakteriofagów.

Lektura dodatkowa

Wirusy w ludzkiej mikrobiocie: https://www.cell.com/cell/fulltext/S0092-8674(21)00072-6
Cykl lityczny i cykl lizogeniczny (w skrócie): https://pl.khanacademy.org/science/biology/biology-of-viruses/virus-biology/a/bacteriophages
Nagrody Nobla z chemii (2018): https://www.nobelprize.org/prizes/chemistry/2018/prize-announcement/

Opisy ilustracji

Ryc. 1. Niedawno odkryty wirus Tsamsa z rodziny Siphoviridae, jeden z największych bakteriofagów. Infekuje bakterie z rodzaju Bacillus i może występować jako profag (w cyklu lizogenicznym) laseczki wąglika (B. anthrax). Źródło: Ganz et al. 2014 (licencja CC BY-SA).
Ryc. 2. SSV19, wrzecionowaty archeowirus o ogonku odznaczającym się osobliwą, siedmiokrotną symetrią obrotową. Wirus ten infekuje ekstremofilne archeowce z rodzaju Sulfolobus, żyjące w źródłach wulkanicznych, silnie zakwaszonych (pH 2–3) i gorących (temperatura ok. 75–80 °C). Wirus wytrzymuje te warunki równie dobrze jak jego gospodarz. Źródło: Han et al. 2022 (licencja CC BY-NC-ND).

Lektyny, czyli białka wiążące cukry: co nam grozi po zjedzeniu fasoli

W poprzednim wpisie napisałem o niebezpieczeństwach związanych z jedzeniem bobu, który zawiera niskocząsteczkowe związki mogące wywołać chorobę zwaną fawizmem. Ale rośliny, zwłaszcza strączkowe, zawierają białka, które mogą spowodować także inne problemy zdrowotne. Tymi białkami są lektyny.

Lektyny i glikokoniugaty

Lektyny są to białka, które mają zdolność wiązania cukrów. Jakich cukrów? Najczęściej obecnych na powierzchni komórek, bo większość komórek bakteryjnych czy eukariotycznych pokryta jest cukrami. Wirusy z osłonką lipidową, które powstały w wyniku „wypączkowania” z błony komórkowej, też mają je na powierzchni. Takie cukry, które mogą być związane z białkami lub lipidami, nazywamy glikokoniugatami.  Pełnią one wiele funkcji: u bakterii, archeonów i grzybów wchodzą w skład ściany komórkowej i regulują ciśnienie osmotyczne wewnątrz komórki. U organizmów eukariotycznych zapewniają połączenia między komórkami i ułatwiają komunikację między nimi. Składają się też na tzw. glikokaliks, czyli węglowodanową warstwę pokrywającą powierzchnię błon komórkowych, która chroni komórki przed uszkodzeniem. Proces przyłączania cukrów do białek czy lipidów jest nazywany glikozylacją. Powstają w ten sposób glikolipidy oraz glikoproteiny, które mogą zawierać glikany związane z resztami asparaginy (nazywane N-glikanami) lub z resztami seryny albo treoniny (nazywane O-glikanami). Większość białek wydzielanych przez komórki oraz wchodzących w skład błony komórkowej jest glikozylowana.

W skład glikokoniugatów może wchodzić kilkadziesiąt rodzajów cukrów prostych (monosacharydów) połączonych w złożone struktury. Każda z takich struktur może być swoiście rozpoznawana przez inną lektynę, a obecnie znamy kilkaset lektyn o zbadanej swoistości (Ryc. 1).

Ryc. 1. Glikokoniugaty na powierzchni komórki eukariotycznej: N-glikany, O-glikany i glikolipidy. Źródło: Li Y et al. Fr. Immunol. 2023, 12: 638753. Licencja CC BY 4.0.

Lektyny i ich struktura

Wszystkie lektyny mają zdolność wiązania cukrów. Robią to za pomocą specjalnej kieszeni, to której dany cukier pasuje. Taka kieszeń może być jedna, ale większość lektyn ma je dwa albo cztery. Przykładem może być lektyna z fasoli (Phaseolus vulgaris), o której jeszcze będzie (Ryc. 2). Dzięki temu lektyny mogą powodować aglutynację, czyli zlepianie się krwinek (ponieważ na powierzchni krwinek jest dużo glikokoniugatów, które te lektyny mogą rozpoznawać).

Ryc. 2. Struktura przestrzenna lektyny PHA-L z czerwonej fasoli (Phaseolus vulgaris) i rozpoznawany przez nią oligosacharyd. Widoczne są cztery podjednostki lektyny, każda z nich może związać cukier przedstawiony po prawej stronie. Obecność niektórych cukrów (+/-) nie jest konieczna. Źródło: Wikipedia, domena publiczna. Oligosacharyd narysowany za pomocą BioRender.com.

Trochę historii

Nazwa „lektyna” (z łaciny „lectus” czyli wybrany) została wprowadzona po raz pierwszy w 1954 r.  przez Williama Boyda i Elizabeth Shapleigh na określenie roślinnych białek, które mogą swoiście aglutynować czerwone krwinki. Ale pierwsze doniesienie na temat lektyn pochodzi z 1888 r., kiedy Peter Hermann Stilmark przedstawił na uniwersytecie w Dorpacie (obecnie Tartu w Estonii) pracę doktorską pod tytułem: „O rycynie, trującym składniku nasion Ricinus communis i innych nasion roślin z rodziny wilczomleczowatych (Euphorbiaceae)”. Autor wyizolował ten składnik (dziś znany jako rycyna albo lektyna z Ricinus communis, w skrócie RCA) z rącznika pospolitego i wykazał, że ma on zdolność do aglutynacji krwinek czerwonych.

Rycyna jest silną trucizną: uważa się że śmiertelna dawka dla człowieka wynosi ok. 1 mg/kg masy ciała. Składa się z dwóch podjednostek A i B, przy czym podjednostka B jest właściwą lektyną, która rozpoznaje galaktozę, a podjednostka A jest toksyną usuwającą adeninę z RNA i należy do białek inaktywujących rybosomy. Ponieważ w rybosomach zachodzi synteza białka, podjednostka A rycyny potrafi w krótkim czasie ją zahamować, powodując śmierć komórki. Związanie podjednostki A z receptorem cukrowym na powierzchni komórki powoduje, że rycyna wnika do jej wnętrza. Skutki mogą być fatalne: u człowieka zatrucie rycyną powoduje śmierć w ciągu kilkudziesięciu godzin (Ryc. 3).

Ryc. 3. Rącznik pospolity (Ricinus communis). Źródło: Franz Eugen Köhler, Köhler’s Medizinal-Pflanzen. Domena publiczna.

Olej rycynowy, który uzyskuje się z nasion rącznika w wyniku tłoczenia na zimno, jest znanym od starożytności środkiem o działaniu przeczyszczającym. Olej ten nie jest trujący, ponieważ lektyna się w nim nie rozpuszcza, a ponadto w czasie produkcji olej podgrzewa się do 80°C, co skutecznie deaktywuje lektynę.

Rycyna jest jednak wyjątkiem na tle innych lektyn. Większość z nich ma jedynie zdolność do wiązania cukrów i nie zawiera żadnej toksyny.

Lektyny w królestwie życia

Lektyny występują u wszystkich rodzajów organizmów. Wirusowe lektyny, które w tym przypadku nazywa się hemaglutyninami, służą wirusom do przyłączania się do glikokoniugatów na powierzchni komórki, które infekują. Dużo ostatnio mówi się o wirusach grypy, których szczepy noszą nazwy HXNY, gdzie H oznacza hemaglutyninę, N neuraminidazę, a X i Y to numery oznaczające subtypy tych białek. Hemaglutynina to lektyna, która umożliwia wirusowi przyłączenie się do cukru (w tym przypadku kwasu sjalowego) na powierzchni komórki, a neuraminidaza to enzym powodujący odłączenie się wirusa od tego receptora. Przykładowo, wirus ptasiej grypy H5N1 (ostatnio o nim głośno) to szczep z hemaglutyniną typu 5 i neuraminidazą typu 1.

Podobną funkcję mają lektyny bakteryjne, nazywane adhezynami: umożliwiają bakteriom kontakt z powierzchnią komórek w czasie infekcji.  Lektyny występują też powszechnie u zwierząt, gdzie pełnią wiele funkcji, takich jak regulacja adhezji między komórkami, przesyłanie sygnału czy udział w odpowiedzi odpornościowej. U roślin modulują adhezję międzykomórkową i chronią przed patogenami, ale najwięcej lektyn znamy u roślin strączkowych (rodzina bobowatych, Fabaceae). Strączkowe żyją w symbiozie z bakteriami brodawkowatymi z rodzaju Rhizobium, które mają zdolność do wiązania azotu z powietrza i przetwarzaniu go w amoniak (NH3). W ramach symbiozy bakterie dostarczają roślinom jonów NH4+, a w zamian otrzymują od roślin węglowodany potrzebne do produkcji ATP. Proces wiązania azotu z powietrza jest bowiem bardzo energochłonny: żeby zredukować jedną cząsteczkę N2 do dwóch cząsteczek NH3, potrzeba 16 cząsteczek ATP.

Lektyny produkowane przez rośliny strączkowe rozpoznają swoiście glikokoniugaty na powierzchni bakterii. Oddziaływania te są gatunkowo swoiste (to znaczy, rośliny danego gatunku wiążą tylko jeden gatunek bakterii). Znanych jest ponad 60 gatunków bakterii Rhizobium i ponad 19 000 gatunków bobowatych, co daje wyobrażenie o zróżnicowaniu lektyn produkowanych przez rośliny należące do tej rodziny (Ryc. 4).

Ryc. 4. Wiązanie bakterii Rhizobium przez lektyny korzenia rośliny z rodziny bobowatych. Źródło: Ahemad M, Biochem. Mol. Biol. 2013, 1: 53-75. Licencja CC BY 3.0.

Lektyny w żywności

Roślinne lektyny są stosunkowo odporne na działanie enzymów trawiennych w naszym przewodzie pokarmowym, co oznacza, że mogą znaleźć się w naszych jelitach w stanie aktywnym. Mogą się tam związać do komórek i spowodować ich uszkodzenie. Najwięcej lektyn zawierają rośliny strączkowe, i to one są najbardziej niebezpieczne: np. czerwona fasola zawiera do 30 mg lektyn na jeden gram nasion (3% suchej masy). Są to dwie lektyny o nieco różnej swoistości, o nazwach PHA-E i PHA-L. Nazwa pochodzi od łacińskiej nazwy fasoli (Phaseolus vulgaris) i komórek, do których te lektyny się wiążą: erytrocytów i leukocytów. Wiązanie to jest ubocznym skutkiem swoistości lektyn wobec bakterii Rhizobium: przez przypadek na powierzchni naszych komórek są takie same cukry, jak w bakteriach. Biała fasola zawiera ok. 3 razy mniej lektyn niż czerwona, a bób najwyżej 5% tej ilości (Ryc. 5).

Ryc. 5. Nasiona czerwonej fasoli. Źródło: Prathyush Thomas, Wikipedia. Licencja GNU Free Documentation License, Version 1.2.

Zatrucie lektynami

Objawy zatrucia lektynami roślin strączkowych to zawroty głowy, wymioty i biegunka połączone z bólem brzucha. Objawy te na ogół mijają po kilku godzinach i nie stwarzają zagrożenia dla życia. Jak ich uniknąć? Lektyny są wrażliwe na obróbkę termiczną: 10-minutowe gotowanie likwiduje 98% ich aktywności. Amerykańska administracja żywności i leków zaleca 5-godzinne namoczenie fasoli w wodzie i 30-minutowe gotowanie. Pomimo to, zatrucia niedogotowaną fasolą zdarzają się: np. w Chinach fasolą zatruło się w latach 2004-2013 ponad 7000 osób, co stanowiło tam 40% zatruć trującymi roślinami. Gotowanie fasoli w popularnych ostatnio slow-cookerach też może się źle skończyć (dla konsumenta), bo temperatura w nich nie jest wyższa niż 75°C, a to za mało, żeby spowodować deaktywację lektyn.

Niektóre lektyny mogą rozpoznawać antygeny grupowe krwi, pisałem o tym w tekście o układzie grupowym ABO. I tak fasola półksiężycowa (Phaesolus lunatus) zawiera lektynę o swoistości anty-A, czarna fasola afrykańska (Griffonia simplicifolia) anty-B, a głąbigroszek szkarłatny (Lotus tetragonolobus, anty-H(O). Obecność lektyn o swoistości grupowej w różnych pokarmach spowodowała powstanie teorii o „diecie zależnej od grup krwi”. Nie ma ona żadnych podstaw naukowych: lektyny o swoistości grupowej są obecne tylko w niektórych pokarmach, które przeważnie gotujemy przed spożyciem.

A co z roślinami, które jednak jemy na surowo? Z rodziny bobowatych jest to np. zielony groszek (Pisum sativum). Zawiera lektynę o dość szerokiej swoistości, ale w nasionach groszku jest jej stosunkowo niewiele. Tak więc możemy jeść groszek na surowo w rozsądnych ilościach bez obawy, że nam zaszkodzi. To samo dotyczy pomidora (Lycopersicon Esculentum), którego owoce (uważane u nas za warzywa) zawierają niewiele lektyn. Co innego liście pomidora, bo te oprócz lektyn zawierają alkaloidy takie jak tomatyna i solanina, które zjedzone w większej ilości mogą być szkodliwe. Alkaloidy te, podobnie jak lektyny, znajdują się też w liściach kuzyna pomidora, czyli ziemniaka (Solanum tuberosum). Dlatego liści ziemniaka lepiej nie jeść (chyba nikt tego nie robi), a bulwy obrobić termicznie, co ułatwia trawienie, a przy okazji deaktywuje lektyny.

Lektyny jako leki?

O zastosowaniu lektyn jako leków (np. przeciwnowotworowych) mówi się od lat, ale jak dotąd wyniki badań klinicznych nie są zbyt zachęcające. Niemniej warto wspomnieć o czosnku (Allium sativum), który zawiera stosunkowo dużo lektyn, bo do 10% suchej masy bulwy. Rozpoznają one glikokoniugaty o wysokiej zawartości mannozy, a takich cukrów jest na naszych komórkach stosunkowo niewiele. Mają je za to często wirusy (np. wirus grypy czy HIV), dlatego są przesłanki, że lektyny z czosnku mogą mieć aktywność przeciwwirusową. To samo dotyczy lektyny z banana (Musa acuminata), która ma podobną swoistość. Wykazano, że lektyna ta hamuje namnażanie wirusa HIV, ale wyniki te uzyskano stosując oczyszczoną lektynę o wysokim stężeniu. Trzeba by zjeść bardzo dużo bananów, żeby uzyskać podobny efekt.

W podsumowaniu: wiele roślin zawiera lektyny, które maja potencjalne zastosowanie jako leki, ale przeważnie jest ich zbyt mało.

Lektyny i alergie

Alergia to patologiczna odpowiedź tkanek na obecność substancji zwanych alergenami, które często same w sobie są nieszkodliwe. Pisała o tym Agnieszka Szuster-Ciesielska. Wiele lektyn może powodować alergie pokarmowe, przy czym najbardziej znana jest lektyna z orzeszków ziemnych (Arachis hypogaea). Ale lektyny mogą wpływać na komórki układu odpornościowego bezpośrednio, wiążąc się do cukrów na powierzchni komórek, co może spowodować ich aktywację. Tak czy inaczej, lepiej unikać roślin zawierających duże ilości lektyn, w tym przede wszystkim czerwonej fasoli na surowo.

Fasola i gazy jelitowe

Po spożyciu fasoli lub innych nasion roślin z rodziny bobowatych często pojawia się problem  gazów jelitowych. Skąd się biorą? Nie jest to sprawa lektyn, ale złożonych cukrów o nazwach rafinoza i stachioza, które są obecne w dość dużych ilościach w nasionach fasoli i innych strączkowych (0,2-1% suchej masy). Rafinoza jest trisacharydem i składa się z galaktozy, glukozy i fruktozy, przy czym galaktoza przyłączona jest wiązaniem α1→6 (Ryc. 6). Glukoza i fruktoza połączone są wiązaniem α1↔2β, podobnie jak w sacharozie. Stachioza zawiera jeszcze jedną galaktozę przyłączoną do galaktozy wiązaniem α1→6 , czyli jest tetrasacharydem. Cukry złożone podlegają w naszym układzie pokarmowym hydrolizie w wytworzeniem cukrów prostych, takich jak galaktoza czy glukoza. Produkujemy w tym celu odpowiednie enzymy. Z rafinozą i stachiozą jest problem, bo nasz układ pokarmowy nie wytwarza α-galaktozydazy, czyli enzymu odszczepiającego α-galaktozę. Tak więc oba cukry przechodzą przez nasze jelito cienkie nienaruszone, i dopiero w jelicie grubym degradują je enzymy produkowane przez obecne tam bakterie. Skutek jest taki, że bakterie te (nazywane mikrobiotą) dostają zamiast zwyczajowych resztek naszego pokarmu pełnowartościowe cukry. Wykorzystują je natychmiast do pozyskiwania energii w ramach fermentacji, a produktami ubocznymi są gazy: metan, wodór i dwutlenek węgla. Czy jest na to jakaś rada? Rafinoza i stachioza stosunkowo dobrze rozpuszczają się w wodzie. Dlatego wodę, w której fasola została namoczona przed gotowaniem, dobrze jest wylać (można to powtórzyć kilka razy). Są też preparaty ograniczające powstawanie gazów, takie jak Espumisan czy Beano. Ten ostatni zawiera enzym trawiący rafinozę i stachiozę, a jego wynalazca jest laureatem alternatywnego Nobla (czyli tzw. Ig Nobla) w 1991 r.

Ryc. 6. Struktura rafinozy: Gal(α1→6)Glc(α1↔2β)Fru. Domena publiczna.

Literatura dodatkowa

Glikozylacja komórek

https://postepybiochemii.ptbioch.edu.pl/index.php/PB/article/view/488

Lektyny jako białka wiążące cukry

https://www.mdpi.com/2218-273X/11/2/188

Swoistość lektyn

https://pubs.acs.org/doi/10.1021/acschembio.1c00689?ref=PDf

Lektyny w żywności

https://www.mdpi.com/2072-6643/12/10/2929

Lektyny jako alergeny

https://www.mdpi.com/2304-8158/9/12/1724

Lektyny roślinne

https://www.sciencedirect.com/science/article/pii/S017616172100170X?via%3Dihub