Amanityna, czyli śmierć na grzybobraniu

Co roku wraz z sezonem grzybowym pojawia się problem zatruć grzybami. Grzyby potrafią produkować wiele biologicznie aktywnych związków chemicznych, takich jak muskaryny, fallotoksyny czy kwas ibutenowy. Wiele z nich zalicza się do trucizn. Niektóre są środkami psychoaktywnymi, jak np. psylocybina zawarta w łysiczce lancetowatej (Psilocybe semilanceata). Pisał o tym Lucas Bergowsky w artykule o narkotykach w służbie wywiadu.

Trujących grzybów jest bardzo dużo: samych muchomorów znanych jest ok. 600 gatunków, ale 90% śmiertelnych zatruć na świecie i 95% w Polsce jest wynikiem spożyciem muchomora zielonawego, dawniej znanego jako muchomor sromotnikowy (Amanita phalloides), lub gatunków z nim spokrewnionych, jak Amanita bisporigera (na wschodzie Ameryki Północnej) i Amanita ocreata (wybrzeże Pacyfiku). W Polsce muchomor zielonawy występuje pospolicie w lasach liściastych i mieszanych, a jego partnerem symbiotycznym jest dąb. Można go pomylić z jadalną gąską zielonką (Tricholoma equestre), bo oba grzyby mają blaszki pod kapeluszem i podobny kolor, ale tylko muchomor ma charakterystyczny pierścień na trzonie oraz pochwę, z której wyrasta owocnik. W Polsce ok. 50 osób rocznie umiera w wyniku zatrucia muchomorem zielonawym (Ryc.1).

Ryc. 1. Muchomor zielonawy (Amanita phalloides). Źródło: Wikpedia, Mushroom observer. Licencja CC BY 3.0.

Równie trujący jest muchomor jadowity (Amanita virosa). Różni się od muchomora zielonawego białym kolorem kapelusza, ale w Polsce jest bardzo rzadki, więc jest mała szansa, że ktoś na niego trafi i ugotuje.

Są jeszcze inne śmiertelnie trujące grzyby, ale nie przypominają znanych jadalnych gatunków. Tak więc głównym niebezpieczeństwem dla grzybiarzy jest muchomor zielonawy.

Co truje w muchomorze zielonawym?

Są w nim dwa rodzaje toksyn fallotoksyny i amatoksyny. Oba są cyklicznymi peptydami, z tym że fallotoksyny składają się z siedmiu reszt aminokwasowych, a amatoksyny z ośmiu. Amatoksyny są bardziej trujące: LD50 (dawka śmiertelna powodująca śmierć połowy badanych zwierząt) wynosi 0,1 mg/kg masy ciała dla amatoksyn i 2 mg/kg dla fallotoksyn. Mechanizm działania jest też różny: fallotoksyny wiążą się do F-aktyny, czyli polimerów aktyny w komórce. Amatoksyny hamują transkrypcję, czyli syntezę mRNA. I to właśnie one są przyczyną większości zgonów po zatruciu grzybami. Jest kilka rodzajów amatoksyn różniących się budową, ale w muchomorze zielonawym najwięcej jest α- i β-amanityny (Ryc. 2).

Ryc. 2. Struktura amatoksyn. Źródło: Barbarosa I et al., J. Phram. Biomed. Anal. 2023, 232: 115421. Licencja CC BY 4.0.

Jakie są objawy zatrucia amanityną?

Żeby spowodować śmierć dorosłego człowieka, wystarczy 7 mg amanityny. Przeciętny muchomor sromotnikowy może jej zawierać 15-30 mg, więc jednym grzybem może się zatruć kilkuosobowa rodzina. Pierwsze objawy mają miejsce się po 6-12 godzinach po zjedzeniu i są to zawroty głowy, wymioty i biegunka. Po tym okresie następuje pozorna poprawa trwająca 24 godziny, ale potem pojawia się żółtaczka (czyli żółte zabarwienie skóry), zaburzenia świadomości, śpiączka, zaburzenia w oddawaniu moczu, krwawe biegunki, uszkodzenie szpiku kostnego i serca. Ma też miejsce typowy dla uszkodzenia wątroby wzrost poziomu transaminaz (ALT/AST) i dehydrogenazy mleczanowej, także wydłużenie czasu protrombinowego, co ma związek z obniżeniem syntezy czynników krzepnięcia. Jeżeli chory nie otrzyma pomocy lekarskiej, śmierć następuje po kilku dniach.

Jaki jest mechanizm działania amanityny?

Toksyna wnika do komórek za pośrednictwem białka OATP1B3, które transportuje przez błonę komórkową rozpuszczalne cząsteczki organiczne (solute carrier organic anion transporter family member 1B3). Białko to przenosi przez błonę komórkową m.in. bilirubinę czy kwas cholowy, a jeżeli amanityna jest we krwi, przeniesie ją do wnętrza komórki. Tam amanityna wiążą się nieodwracalnie z polimerazą II RNA i hamuje transkrypcję. Proces ten polega na syntezie cząsteczki RNA w wyniku dodawania rybonukleotydów komplementarnych do deoksyrybonukletoydów na nici matrycowej DNA, i jest niezbędny, aby mogło powstać białko.

Polimeraza RNA II syntezuje RNA kodujące białka, czyli mRNA. W jej centrum aktywnym (czyli fragmencie odpowiedzialnym za aktywność enzymatyczną) znajdują się dwa ważne elementy: helisa mostkowa (bridge helix) i pętla cynglowa (trigger loop). W obecności jonu metalu (Mg2+) biorą one udział w przyłączaniu rybonukleotydów, czyli podjednostek tworzących RNA. Amanityna wiąże się do pętli cynglowej, zmieniając jej położenie wobec helisy mostkowej i uniemożliwiając w ten sposób syntezę RNA. Dotyczy to jednak tylko polimerazy RNA u kręgowców: enzymy innych gatunków mają inną budowę i nie są hamowane przez amanitynę. Dlatego muchomor syntezuje własne mRNA bez problemów; amanityna nie szkodzi też np. ślimakom (Ryc. 3).

Ryc. 3. Rola amanityny w hamowaniu polimerazy II RNA. Źródło: Liu X et al., J. Biol. Chem. 2018, 293: 7189-7194. Licencja CC BY 4.0.

A. Schemat syntezy RNA (rybonukleotydy w kolorze brązowym) na matrycy DNA (nić matrycowa: deoksyrybonukleotydy w kolorze granatowym; nić kodująca: kolor jasnoniebieski). Zaznaczono jon metalu (fioletowy), pętlę cynglową (bridge loop, kolor brązowy), helisę mostkową (bridge helix, kolor zielony) i amanitynę (kolor pomarańczowy).

B. Struktura kompleksu ludzkiej polimerazy RNA II w kompleksie z amanityną (C). Amanityna wiąże pętlę cynglową i helisę mostkową w polimerazie RNA II, co uniemożliwia przyłączenie kolejnego rybonukleotydu (kolor brązowy) do powstającej nici RNA. W wyniku tego synteza RNA ulega zatrzymaniu.

Zahamowanie transkrypcji powoduje obniżenie syntezy ważnych dla organizmu białek, takich jak enzymy wątrobowe czy czynniki krzepnięcia, co może prowadzić do zaburzeń w działaniu organizmu. Ale to nie te zmiany są przyczyną śmierci po spożyciu amanityny: toksyny jest za mało, żeby zahamować syntezę mRNA w całym organizmie. Natomiast zaburzenia w transkrypcji powodują uruchomienie mechanizmów apoptozy, czyli programowanej śmierci komórki, i to właśnie jest przyczyną toksyczności amanityny. Następuje ekspresja białka p53 i kilku innych białek związanych z apoptozą: skutkiem jest uwolnienie cytochromu c z mitochondriów, aktywacja kaspaz (enzymów degradujących białka) i śmierć komórki. Amanityny pośrednio generują też reaktywne formy tlenu powodujące stres oksydacyjny (pisałem o tym w tekście o niebezpieczeństwach związanych z jedzeniem bobu).

Można więc powiedzieć, że amanityna wprawdzie hamuje syntezę mRNA, ale to reakcja komórek na to zahamowanie powoduje fatalne skutki. Śmierć komórek w wyniku apoptozy daje opisane wyżej objawy zatrucia muchomorem zielonawym. Najbardziej narażona jest wątroba, ponieważ jej komórki mają najwięcej białek OATP1B3, które transportują amanitynę. Skutek jest fatalny: amanityna wnika do komórek wątroby i sieje zniszczenie (Ryc. 4).

Ryc. 4. Mechanizm działania α-amanityny. Toksyna po wniknięciu do komórki za pośrednictwem białka OATP1B3 wiąże się do centrum aktywnego polimerazy II RNA i hamuje jej działanie. Powoduje to aktywację białka p53 i uruchomienie apoptozy z uwolnieniem cytochromu c i aktywacją kaspaz. Powstają też reaktywne formy tlenu (ROS). Źródło: Barbarosa I et al., J. Phram. Biomed. Anal. 2023, 232: 115421. Licencja CC BY 4.0.

Co możemy zrobić w przypadku zatrucia muchomorem zielonawym?

Niewiele, ponieważ kiedy pojawiają się objawy, jest już przeważnie zbyt późno na interwencję (toksyna jest już w komórkach). Stosuje się wymianę płynów i elektrolitów, wymuszoną diurezę (czyli środki moczopędne), a także wlewy dożylne z sylibiny, która jest flawonoidowym związkiem pochodzącym z ostropestu plamistego (Silybum marianum) o działaniu przeciwzapalnym i przeciwutleniającym. Skuteczność tych zabiegów jest jednak niewielka. Śmiertelność w wyniku zatrucia wynosi ok. 50%.

Zieleń indocyjanowa jako antidotum na amanitynę?

W marcu 2023 r. autorzy artykułu opublikowanego w Nature Communications wykazali, że toksyczna aktywność amanityny w komórce zależy od N-glikozylacji, czyli przyłączania cukrów do białek. Okazało się, że jeden z enzymów biorących udział w tym procesie, znany pod skrótową nazwą STT3B  (podjednostka kompleksu glikozylotransferazy dolichol-białko; dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit) jest niezbędny, aby amanityna mogła działać. Aktywność tego enzymu można zahamować za pomocą zieleni indocyjanowej, który jest fluorescencyjnym barwnikiem używanym od lat w diagnostyce medycznej. W badaniach na liniach komórkowych i myszach wykazano, że myszy przeżyją, jeżeli w ciągu ośmiu godzin od podania toksyny dostaną dożylnie zieleń indocyjanową. Rola glikozylacji w podatności na amanitynę jest tu trudna do wytłumaczenia, ale barwnik ten może być potencjalnym lekiem w przypadku zatrucia amanityną. Jest tylko jeden problem: objawy zatrucia amanityną pojawiają się najwcześniej po 6 godzinach i są dość łagodne. Wtedy można jeszcze interweniować. Przy poważnych objawach (36-48 godzin po spożyciu toksyny) jest już raczej za późno (Ryc. 5).

Ryc. 5. Zieleń indocyjanowa. Żródło: Wikipedia, domena publiczna.

Nie ma więc dobrej terapii dla osób zatrutych amanityną. Jeżeli dojdzie do uszkodzenia wątroby – jedynym ratunkiem jest jej przeszczep.

Jak się nie zatruć?

Amanityny są stabilne termicznie, więc nie ma mowy o pozbyciu się ich w wyniku gotowania czy smażenia. Chyba najlepiej unikać grzybów z blaszkami, z wyjątkiem tych, które można łatwo rozpoznać, jak kurki czy rydze. W USA dostępny jest test do wykrywania amatoksyn. Ale nawet mając wynik ujemny chyba lepiej nie ryzykować. Jest wiele innych smacznych grzybów.

Literatura dodatkowa

Amanityna: budowa, mechanizm działania, wykrywanie

https://www.sciencedirect.com/science/article/pii/S0731708523001905?via%3Dihub

Amanityna: mechanizm działania

https://www.mdpi.com/2072-6651/13/6/417

Struktura kompleksy polimeraz RNA II – amanityna

https://www.sciencedirect.com/science/article/pii/S0021925820392048?via%3Dihub

Zieleń indocyjanowa jak antidotum na amanitynę

https://www.nature.com/articles/s41467-023-37714-3

Miliony lat bez seksu

Liszajec (Lepraria) jest grzybem z rodziny chróścikowatych (Stereocaulaceae), który współpracuje z jednokomórkowymi zielenicami z rodzaju Asterochloris, tworząc porosty. W odróżnieniu od porostów barwnych lub o fantazyjnych kształtach Lepraria to organizm bardzo niepozorny. Wiele gatunków przypomina po prostu szary, kremowy lub seledynowy proszek rozsypany na podłożu. Inne mogą tworzyć bardziej zwarte, skorupiaste plechy o wyraźnych brzegach, czasem rozrastające się w rozety podzielone na łuseczki lub odcinki, ale w zasadzie typowy liszajec to organizm o morfologii minimalistycznej, prawie bezpostaciowy. Plecha składa się zwykle z maleńkich granulek (o średnicy rzędu 0,05−0,1 mm), będących jednocześnie rozmnóżkami (sorediami), umożliwiającymi rozmnażanie wegetatywne. Strzępki grzyba otaczają w nich komórki symbiotycznej zielenicy i wraz z nimi dają początek nowym koloniom.

Porost z rodzaju Lepraria na pniu drzewa. Zdjęcie własne autora.

Badania genetyczne umożliwiły porządne zdefiniowanie rodzaju Lepraria. Niektóre gatunki wcześniej do niego zaliczane okazały się przedstawicielami zupełnie innych rodzin, a z kolei niektóre gatunki pierwotnie umieszczane w innych rodzajach wylądowały wśród liszajców. Obecnie oficjalna liczba znanych gatunków liszajca wynosi ponad 70 i jest oczywiste, że to tylko wierzchołek góry lodowej: wiele kolejnych dopiero oczekuje na odkrycie i opisanie, a ich identyfikację utrudnia złudne podobieństwo morfologiczne, niekoniecznie świadczące o bliskim pokrewieństwie. Analizy filogenetyczne wskazują, że liszajce przeszły w swojej historii co najmniej trzy duże radiacje przystosowawcze, kolonizując rozmaite nisze ekologiczne (podłoża różnego typu) na wszystkich lądach od Grenlandii po Antarktydę. Z powodu braku śladów kopalnych trudno jest określić precyzyjnie wiek rodzaju, ale samo jego zróżnicowanie, globalny zasięg i oszacowania korzystające z metody zegara molekularnego pozwalają sądzić, że ostatni wspólny przodek dzisiejszych liszajców istniał zapewne dziesiątki milionów lat temu, być może w eocenie lub oligocenie.

Cladonia carneola (chrobotek cielisty), dość bliski krewny liszajców. Widoczne są brązowe owocniki (apotecja) i pyknidy (punkciki na obrzeżach kieliszkowatych podecjów). Zdjęcie własne autora.

Uproszczona budowa liszajców nie świadczy o ich prymitywizmie, ale jest wynikiem ewolucyjnej redukcji, jakiej uległ ich bardziej złożony przodek. Do bliskich krewnych liszajców należą np. chróściki (Stereocaulon) i chrobotki (Cladonia). Nawet partner fotosyntetyzujący (Asterochloris) jest ten sam w dwu siostrzanych rodzinach, Cladoniaceae i Stereocaulaceae (do tej drugiej należą Stereocaulon i Lepraria). Kuzyni liszajców to łatwo rozpoznawalne porosty tworzące trzoneczkowate lub porozgałęziane plechy wtórne (podecja), często o wyglądzie nader fantazyjnym. Pojawiają się na nich charakterystyczne dla workowców owocniki (tzw. apotecja) lub pyknidy (wytwarzające zarodniki służące do rozmnażania bezpłciowego). Nic takiego nie znaleziono nigdy u liszajców. Ich plechy dosłownie rozpadły się w proch, a mówiąc ściślej – w nagromadzenie granulkowatych sorediów. Żaden ze znanych gatunków Lepraria nie wytwarza zarodników; brak też przekonujących dowodów genetycznych na to, że w ewolucyjnej historii rodzaju zachodziła jakakolwiek forma rekombinacji (choćby bez udziału zarodników, wskutek fuzji komórek grzybni). Apotecja są po prostu nieobecne, a nie skrajnie rzadkie – przynajmniej taki jest obecny stan wiedzy na ten temat.

Apotecja (owocniki) Cladonia carneola w powiększeniu. Zdjęcie własne autora.

Wygląda na to, że od milionów lat rodzaj Lepraria obywa się bez seksu i rekombinacji, a mimo to nadal żyje, ma się dobrze, a nawet podbił cały świat. Należy do porostów wytrzymałych i odpornych na zanieczyszczenia, więc również istnienie Homo sapiens niezbyt mu przeszkadza. Jego badanie jest ważne dla zrozumienia zjawiska, jakim jest istnienie wśród eukariontów taksonów całkowicie aseksualnych, i zagadki, jaką stanowi fakt, że wbrew wszelkim oczekiwaniom niektóre z nich odnoszą sukces ewolucyjny, zamiast szybko wymrzeć. Żeby przez miliony lat żyć bez seksu, trzeba znaleźć sposób na uniknięcie tzw. zapadki Mullera, czyli nieodwracalnego gromadzenia się niekorzystnych mutacji obciążających pulę genetyczną populacji, która rozmnaża się wyłącznie bezpłciowo. Zapadka Mullera prowadzi do konsekwentnego obniżania średniego dostosowania populacji i spadku różnorodności genetycznej z pokolenia na pokolenie. Konsekwencją jest spadek wielkości populacji, co nasila działanie zapadki i ostatecznie prowadzi do wymarcia gatunku. Lepraria w jakiś sposób unika tego z pozoru nieubłaganego efektu statystycznego, choć nie do końca wiadomo jak.

Ogromna większość grzybów porostowych należy do gromady workowców (Ascomycota). W odróżnieniu od podstawczaków (Basidiomycota), których dziwny seks opisywałem przy innej okazji, workowce mają tylko dwa typy koniugacyjne („płci”). Wiele gatunków workowców tworzących porosty rozmnaża się głównie lub wyłącznie wegetatywnie, ale niemal zawsze należą one do rodzajów, w których inne, blisko spokrewnione gatunki zachowały zdolność do rozmnażania płciowego. Liszajec jest wyjątkiem jako duży rodzaj, w którym aseksualność wydaje się bezwyjątkowa i stabilna w długiej skali ewolucyjnej.

Po lewej: Physcia caesia (obrost modry) z rodziny Physciaceae. Jest to porost rzadko rozmnażający się płciowo. Tworzy liczne „pomponikowate” skupiska sorediów (dobrze widoczne na zdjęciu), dzięki którym rozmnaża się bezpłciowo, ale można też spotkać okazy takie jak ten, z apotecjami (w kształcie okrągłych tarczek). Nie można go zatem nazwać gatunkiem aseksualnym. Zdjęcie własne autora.

Oczywiście brak rozmnażania płciowego oznacza, że gatunki liszajców nie mogą być definiowane za pomocą koncepcji Mayra (wg której gatunek to „grupa realnie lub potencjalne krzyżujących się populacji, które rozrodczo odizolowane są od podobnych sobie grup”). Odpada też kryterium morfologiczne, bo odlegle spokrewnione liszajce mogą na oko wyglądać identycznie. Trzeba się zatem opierać na stopniu pokrewieństwa: monofiletyczne linie rozwojowe liszajców, które dzieli odpowiednio duży dystans genetyczny, zwłaszcza w połączeniu z występowaniem odrębnych przystosowań (których skutkiem są odmienne cechy chemiczne i preferencje środowiskowe) zalicza się do różnych gatunków. Trudno: świat istot żywych jest zbyt skomplikowany, żeby jedna uniwersalna definicja pozwoliła go poszufladkować ku ogólnemu zadowoleniu.

Jeśli chodzi o zwierzęta, jednym z najczęściej przytaczanych przykładów aseksualności utrzymującej się przez wiele milionów lat są wrotki bdelloidalne (gromada Bdelloidea). Tworzą one wielkie populacje składające się wyłącznie z rozmnażających się dzieworódczo (czyli bezpłciowo) samic. W 2022 r. ukazał się jednak artykuł, którego autorzy prezentują dane genomowe wskazujące na sporadyczne uprawianie seksu przez przynajmniej niektóre wrotki bdelloidalne (gatunek Macrotrachella quadricornifera). Przeczyłoby to poglądowi, wg którego wszystkie wrotki z gromady Bdelloidea są wyłącznie partenogenetyczne od ok. 40–60 mln lat. Co prawda nikt dotąd nie widział samca któregokolwiek z kilkuset gatunków wrotków bdelloidalnych, ale nie stanowi to dowodu, że samce nie istnieją. Mogą się po po prostu pojawiać skrajnie rzadko. Seks fakultatywny i kryptyczny – np. raz na dziesięć tysięcy pokoleń – to nadal nie jest ścisła abstynencja.

Wrotek bdelloidalny. Foto: Frank Fox. Źródło: Wikipedia (licencja CC BY-SA 3.0 de).

Ponadto wrotki bdelloidalne potrafią sobie kompensować brak lub rzadkość rekombinacji za pomocą poziomego transferu DNA (pozyskiwania fragmentów obcych genomów) o wiele częściej, niż się to zdarza u innych zwierząt. Prawdopodobnie sprzyjają temu ich cykle życiowe: wrotki przy braku wody mogą wejść w stan anabiozy i ulec zasuszeniu, ale powracają do życia po ponownym nawodnieniu. W ogóle ich zdolność do anabiozy jest zadziwiająca, podobnie jak u niesporczaków: dwa lata temu udało się ożywić wrotka bdelloidalnego, który spędził 24 tys. lat, hibernując w syberyjskiej wiecznej zmarzlinie. W trakcie takiego „zmartwychwstawania” uruchamiana jest naprawa DNA i scalanie uszkodzonych chromosomów. Podczas anabiozy błony komórkowe stają się przepuszczalne, a zatem bariera chroniąca genom przed przenikaniem obcego DNA nie jest stuprocentowo szczelna. Podczas sklejania przerwanych nici DNA przez wyspecjalizowane enzymy może się zdarzyć wklejenie do niego obcych sekwencji (pochodzących od rozmaitych organizmów, niekoniecznie zwierząt). Ukradkowy seks raz na wiele pokoleń oraz stosunkowo częsty transfer poziomy mogą być wystarczającym źródłem innowacji wspomagających ewolucję nowych funkcji i cech przystosowawczych. Pozwala to powstrzymać spadek średniego dostosowania populacji. Zjawiska tego typu są rzadkie wśród zwierząt, ale dobrze znane na przykład wśród prokariontów i prymitywnych eukariontów, które na różne sposoby wymieniają się nośnikami informacji genetycznej.

Roztocz Oppiella nova. Foto: M. Maraun and K. Wehner. Źródło: Uniwersytet w Getyndze (domena publiczna).

Dla równowagi w 2021 r. przedstawiono dowody, również genomowe, że maleńki roztocz Oppiella nova jest naprawdę wyłącznie partenogenetyczny od kilku lub kilkunastu milionów lat. Wskazuje na to tzw. efekt Meselsona (niezależna ewolucja każdej z haploidalnych połówek diploidalnego genomu, świadcząca o całkowitym niewystępowaniu rekombinacji i segregacji chromosomów). O. nova to gatunek ciekawy także z innych względów. Aczkolwiek nie rzuca się w oczy (ma 0,22–0,35 mm długości), odznacza się wyjątkowym zasięgiem występowania. Żyje na wszystkich kontynentach (z ewentualnym wyjątkiem Antarktydy) i wielu wyspach oceanicznych, od lasów deszczowych Ameryki Południowej po tundrę na Spitsbergenie i hałdy śmieci w Polsce. Jest jednym z kandydatów do tytułu najbardziej rozpowszechnionego stawonoga lądowego na Ziemi. Odżywia się głównie strzępkami grzybni. Jak widać, można przez miliony pokoleń nie uprawiać seksu, a jednocześnie odnosić rekordowe sukcesy reprodukcyjne. Być może nawet między jednym a drugim istnieje jakiś związek czekający na wyjaśnienie. W każdym razie istnieją przykłady organizmów, które najwyraźniej nie przejmują się zapadką Mullera i mają jakiś sposób na jej obchodzenie.

Lektura dodatkowa

Problemy dotyczące definiowania gatunków aseksualnego rodzaju Lepraria.
Skrzętnie skrywana seksualność wrotków bdelloidalnych.
Nieskalane dziewictwo Oppiella nova
. Patrz także: popularne streszczenie.

Organizmy mało znane: Grzyby i ich dziwne życie seksualne

Stanisław Lem w „Podróży dwudziestej piątej” Ijona Tichego (Dzienniki gwiazdowe) opisuje pięciorniaki, istoty rozumne zamieszkujące ognistą planetę i przyswajające amoniak, których reprodukcja wymaga udziału pięciu płci (Dada, Gaga, Mama, Fafa i Haha). Pięciorniaki zakładają bez dyskusji, że inny system nie byłby możliwy. Także i my na podstawie naszego zwierzęcego doświadczenia milcząco zakładamy, że liczba płci biologicznych u istot rozmnażających się płciowo wynosi dwie i że jest to logiczne i nieuniknione. Przywykliśmy bowiem do tzw. anizogamii, czyli istnienia gamet dwóch bardzo różnych typów: żeńskiej komórki jajowej, dużej i stacjonarnej, oraz męskiego plemnika, maleńkiego i ruchliwego. Każda z nich jest haploidalna, czyli zawiera pojedynczy komplet chromosomów. Z ich połączenia powstaje diploidalna zygota z podwójnym zestawem chromosomów i rozwija się w organizm z takimże podwójnym zestawem w każdej komórce ciała (prócz komórek linii płciowej, które po podziale mejotycznym dają początek haploidalnym gametom i kółko się zamyka).

Tymczasem istnieją liczne grupy organizmów, u których wykształciły się inne mechanizmy rozmnażania płciowego, a anizogamia nie zawsze istnieje, gdyż formy haploidalne łączące się seksualnie (koniugujące) mogą się nie różnić rozmiarami ani wyglądem. Nadal nie wyklucza to istnienia dwóch typów koniugacyjnych (które można uznać za uogólnienie pojęcia płci), ale też nie ogranicza ich liczby do dwóch. Najbogatsza w gatunki grupa grzybów, workowce (Ascomycota), jest zasadniczo dwupłciowa. Żeby dwie formy haploidalne workowca mogły połączyć swój materiał genetyczny, muszą należeć do różnych typów, ale jakkolwiek je nazwiemy, jest ich tyle samo, ile płci u zwierząt. Płeć jest zdeterminowana przez jeden locus DNA, który może mieć dwa warianty.

Jednak jest jeszcze inna duża grupa grzybów, obejmująca kilkadziesiąt tysięcy gatunków, podstawczaki (Basidiomycota). Należy do niej większość grzybów, których owocniki zbieramy po lasach, żeby je włożyć do garnka. Podstawczaki wykształciły bardziej skomplikowane systemy dobierania się form haploidalnych (w ich przypadku grzybni pierwotnej, powstającej z haploidalnych zarodników) w pary, dzięki czemu powstaje grzybnia dikariotyczna, w której każda komórka ma parę jąder sprzężonych; z niej z kolei rozwijają się owocniki (czyli to, co potocznie nazywamy grzybami). U ogromnej większości podstawczaków typ koniugacyjny (płeć) zależy od dwóch niezależnie dziedziczonych loci (lokalizacji w obrębie genomu). W jednym z nich (A) rezydują geny kodujące czynniki transkrypcyjne regulujące rozwój owocników. W drugim (B) – geny kodujące feromony i sprzężone z nimi receptory, pozwalające grzybni pierwotnej rozpoznać potencjalnego partnera. U części podstawczaków zarówno pierwszy, jak i drugi locus mogą mieć wiele wariantów (alleli). Żeby spłodzić potomstwo, partnerzy muszą się różnić w obu loci. Inaczej nici z seksu.

Dość skrajnym przykładem jest rozszczepka pospolita (Schizophyllum commune), grzyb kosmopolityczny z rzędu Agaricales (do którego należą także np. pieczarki, gąski, muchomory i purchawki). U rozszczepki locus A ma 288 znanych alleli, a locus B – 81. Po wymnożeniu daje to 288 × 81 = 23328 kombinacji. Tyle właśnie płci (typów koniugacyjnych) może mieć Schizophyllum commune. Jeśli jednak stawiamy wymaganie, żeby partnerzy różnili się w obu loci, dla konkretnej grzybni pierwotnej odpada 288 + 81 − 1 (razem 368) płci, a pozostaje 22960 płci, z którymi można uprawiać grzybowy seks. W ten sposób rozszczepka gwarantuje sobie z jednej strony dostateczny dystans genetyczny między partnerami (co wpływa na różnorodność genetyczną gatunku i jego zdolności adaptacyjne), a z drugiej strony – ok. 98% szans, że z napotkanym na chybił trafił partnerem można się rozmnożyć.

W jednym z wcześniejszych wpisów wspominałem o typach koniugacyjnych u śluzowców. U nich także w obrębie tego samego gatunku mogą istnieć setki płci. Rozszczepka jednak bije śluzowce na głowę, a biorąc pod uwagę naszą wciąż szczątkową wiedzę o biologii grzybów, można spokojnie założyć, że prawdziwi rekordziści nadal się ukrywają przed mykologami.

Zdjęcia rozszczepki pospolitej własne. © 2023 by Piotr Gąsiorowski