Jak sierp, młot i swastyka odebrały Rudolfowi Weiglowi nagrodę Nobla

Polak Rudolf Weigl nigdy nie dostał nagrody Nobla, chociaż opracował szczepionkę przeciw tyfusowi, bo nie chciał być naukowcem ani spod znaku swastyki, ani czerwonej gwiazdy. Pomógł uratować miliony istnień bezpośrednio, a pośrednio Herberta, Banacha, Wisłocką i wielu innych. Tyfus występował tam, gdzie były wojna i głód.

Drugiego września 1883 roku w Przerowie (obecnie Czechy) w austriackiej rodzinie przyszedł na świat Rudolf Weigl. Był Polakiem z wyboru. Niszczyli go komuniści i hitlerowcy. Wszy tyfusowe karmił własną krwią. Odznaczali go medalami papież i król Belgii. O karmiciel(k)ach “wszy Weigla” śpiewał nawet Jacek Kaczmarski. Jak to z tym tyfusem i Weiglem było?

Prof. Rudolf Weigl (z archiwum rodzinnego Krystyny Weigl-Albert i Mai Weigl-Wojnarowskiej)

Tyfus zabijał od stuleci, szczególnie tam gdzie pojawiała się wojna i głód

Podczas odwrotu Wielkiej Armii spod Moskwy w 1812 roku, tylko w Wilnie, przebywało w szpitalach około 25 tysięcy żołnierzy Napoleona. Przeżyło zaledwie trzy tysiące. Większość umarła na tyfus plamisty. Paweł Edmund Strzelecki znany głównie z odkryć geograficznych, pomagał Irlandczykom w czasie głodu i tyfusu (1845-49). Zaraza ziemniaczana powodowana przez pierwotniaka grzybopodobnego dotarła do Irlandii z USA, gdzie była mniej groźna, bo tam występowały bardziej zróżnicowane odmiany ziemniaka.

Wielki Głód w Irlandii (an Gorta Mór, Great Famine, 1845 – 1852): ekologia i polityka – Eksperyment Myślowy (eksperymentmyslowy.pl)

Na ziemiach polskich, zaraza ta najbardziej dotknęła w 1847 Galicję i tam również wtórnie do głodu pojawił się tyfus plamisty. Lepiej broniły się regiony z żywnością otrzymywaną ze zbóż. Irlandczycy zaufali szybciej Polakowi i katolikowi niż Anglikom. Strzelecki pomagał im pomimo, że sam zachorował. Irlandczycy zaczęli masowo migrować do USA. Spowodowało to wybuch epidemii tyfusu w Nowym Jorku w 1847 roku. Tyfus był jedną z głównych przyczyn powstania Wyspy Imigrantów (Ellis Island). Na wyspie, głównie w latach 1892–1924, obserwowano między innymi, czy przybywający do USA nie chorują na jakąś chorobę zakaźną.

Rodzina imigrantów na nabrzeżu na Ellis Island, patrząca na panoramę Nowego Jorku w oczekiwaniu na prom. Bettmann Archive/Getty Images

Tyfus zabił więcej Amerykanów w czasie wojny secesyjnej niż kule. W czasie I WŚ, tyfus plamisty był tak powszechny wśród żołnierzy, że powstrzymywano działania wojenne na wiele tygodni. Między innymi dlatego żołnierzy strzyżono potem “na zapałkę”.

Na tyfus umarło wielu jeńców sowieckich po przegranej przez Rosję sowiecką wojnie polsko-bolszewickiej. Putin próbował porównać to do Katynia. Prezydent Kaczyński skrytykował to idiotyczne porównanie w znanym przemówieniu, pierwszego września 2009 roku na Westerplatte.

Również Weigl jako sanitariusz (dziś powiedzielibyśmy ratownik pola walki), był świadkiem tragedii epidemii tyfusowej. Było to w trakcie pierwszej wojny światowej. Właśnie w lazarecie armii austriackiej zdecydował się opracować szczepionkę, przeciw tyfusowi plamistemu.

Rudolf Weigl wśród austriackich lekarzy i wojskowych. Pierwsza wojna światowa.

Szczepionka Weigla ratowała miliony istnień

Szczepionkę przeciw tyfusowi plamistemu Rudolf Weigl opracował w 1920 roku. Do jej produkcji potrzebni byli karmiciele wszy (strzykacze). Weigl karmił wszy również własną krwią – był jednym z pierwszych strzykaczy. Szczepionkę Weigla wprowadzono na dużo skalę w katolickich belgijskich misjach w Chinach. Król Belgii odznaczył Weigla w 1937 roku Orderem Leopolda. Jest to jedno z najwyższych odznaczeń belgijskich. W czasie II WŚ, szczepionka potajemnie była produkowana przez Państwowy Zakład Higieny w Warszawie i dostarczana partyzantom Armii Krajowej oraz więźniom w obozach koncentracyjnych i do gett. Uratowała życie olbrzymiej liczbie ludzi. Weigl odmówił podpisania volkslisty mimo, że Niemcy obiecali mu pomoc w zdobyciu Nobla. „Człowiek raz na całe życie wybiera sobie narodowość. Ja już wybrałem”. Weigl odmówił bycia naukowcem zarówno spod czerwonej gwiazdy, jak i swastyki.

Na zdjęciu widać jak odbywało się karmienie wszy.

Zemsta Chruszczowa po zemście hitlerowców

Weigl miał powiedzieć Chruszczowowi: „Nigdzie nie ma tak wspaniałych wszy jak we Lwowie”. Weigl musiał jednak wyjechać do Krakowa. Po wybuchu rewolucji na tyfus zachorowało 25 mln ludzi, a zmarło ok. 10% chorych. „Albo socjalizm pokona wszy, albo wszy pokonają socjalizm” powiedział kiedyś Lenin. Więc zadanie Chruszczowa było ważne, a odmowa Weigla była czymś czego władza sowiecka nie mogła darować.

Plakat informujący o tym, że Rosjanie powinni chronić siebie i innych przed wszami tyfusowymi, dokładnie myjąc się i piorąc swoje ubrania.

Łatwo było postawić Weiglowi fałszywy zarzut kolaboracji z Niemcami, bo szczepionka trafiała również na front wschodni – do Wehrmachtu. Są świadectwa mówiące o tym, że duża część trafiających tam produkcji (szarż) była sabotowana przez zespół Weigla. Weigl nie dostał więc Nobla mimo, że zgłoszono jego kandydaturę kilkadziesiąt razy. Najpierw przeszkodzili w tym Niemcy, bo nie chciał z nimi współpracować. Potem przeszkodzili Sowieci twierdząc, że współpracował z Niemcami.

Zbigniew Herbert, Stefan Banach, Michalina Wisłocka czy przeżyliby wojnę gdyby nie Weigl?

Szczepionka Weigla uratowała wielu ludzi również w innym sensie. Karmiciele wszy mogli liczyć na lepsze warunki życia w okupowanej Polsce. Był wśród nich poeta Herbert, matematyk Banach.

Karmicielką wszy była Basia w serialu „Polskie drogi”. W przenośni była nią bohaterka wiersza Jacka Kaczmarskiego „Nawiedzona”. Realnie strzykaczką była autorka „Sztuki kochania” Michalina Wisłocka.

Władysław Szpilman, którego historia przetrwania w Warszawie opisana została w filmie “Pianista”, twierdził, że Weigl był w getcie równie znany jak Hitler, ale z zupełnie innych powodów. Za ratowanie Żydów Weiglowi został wręczony Medal Sprawiedliwy Wśród Narodów Świata.

Papież Pius XI odznaczył go Orderem Świętego Grzegorza. Tak honorowani byli tylko wyjątkowi świeccy.

Skuteczniejsze od szczepionki Weigla okazały się w przypadku tyfusu plamistego: pokój, antybiotyki, higiena. Antybiotyki są nadużywane, a głód i wojna zaczynają wracać tam gdzie dawno ich nie było.

Wykorzystano fotografie ze stron:

Rudolf Weigl (lwow.com.pl)

MPH-8516 – Muzeum Narodowe Ziemi Przemyskiej – zbiory zwizualizowane (mnzp.pl)

Czy biotechnolodzy, próbujący otrzymać komórki mózgu z komórek skóry, zachowują się podobnie jak alchemicy renesansu, którzy próbowali transmutować (przemienić) ołów w złoto?

Kim byli alchemicy?

Próby alchemików kończyły się niekiedy dość tragicznie. Starał się to uzmysłowić Pieter Brueghel Młodszy. Jak widać na poniższym obrazie, mąż rzekomo stara się przemienić (transmutować) jakiś metal w złoto. Oszust – udający nauczyciela – przekonuje rodzinę, że to się da zrobić. Żona nie ma już dla męża monet, które ten mógłby umieścić w naczyniu laboratoryjnym. W prawym górnym rogu obrazu widać projekcję tego, co czeka dzieci małżonków – przytułek. W dzisiejszych czasach przemiana (transmutacja) ołowiu w złoto jest wykonalna, ale zwyczajnie nieopłacalna. Ówczesnymi metodami nie było to możliwe.

Pieter Brueghel Młodszy „Alchemik”, ok. 1600 r. / DOMENA PUBLICZNA

Rycina 1

Współcześnie biotechnolodzy twierdzą, że z komórek skóry, np. keratynocytów, da się otrzymać komórki układu nerwowego np. neurony, a z komórek kości (osteoblastów) – komórki serca (kardiomiocyty) itp. Czy w związku z tym są oni alchemikami biologii? Czy mamią swoich inwestorów? Niektórzy takie zarzuty stawiali biotechnologom całkiem niedawno. Jakie bariery biotechnolodzy muszą pokonać, aby tego dokonać? Czy są to bariery równie trudne do pokonania, jak w czasie prób przemieniania (transmutacji) ołowiu w złoto?

Jakie bariery zabezpieczają przed przeobrażaniem się komórek jednego organu w komórki innego organu?

Wszystkie komórki w organizmie jednego człowieka mają ten sam genom (poza nielicznymi wyjątkami i abstrahuje się tutaj od komórek nowotworowych). Wydaje się więc, że nie powinno być wielkich problemów z przemianą komórki wątroby w komórkę skóry czy skóry w neuron (rozważając proces na tym poziomie sekwencji DNA). Wszystkie komórki mają pełen zestaw genów, pozwalających upostaciować się w dowolną komórkę organizmu. Jednak sekwencje DNA (genetyka) to nie wszystko. Wiele mechanizmów zapobiega takiej przemianie, przeobrażaniu się komórki w komórkę. Jeśli byłoby to możliwe, w naszych organizmach zapanowałby wielki chaos. Nagle w sercu pojawiłyby się komórki wątroby, a w mózgu – skóry. Pomimo więc, że w każdej komórce tego samego osobnika mamy ten sam genom (tę samą sekwencję DNA), komórki różnią się od siebie i istnieje bardzo wiele mechanizmów zapobiegających ich przemianie – przejściu fenotypowemu jednej komórki w drugą. Od czego zależy odmienny fenotyp komórek – ich odmienna budowa i funkcja, skoro wszystkie mają ten sam genom u jednego osobnika. W różnych komórkach ulegają ekspresji różne geny. W neuronie potrzebne do przewodnictwa, a w kardiomiocycie do kurczenia się. Dlaczego tak się dzieje? Decydują o tym najogólniej zjawiska epigenetyczne. Jedne fragmenty DNA w różnych komórkach (fibroblastach, neuronach, limfocytach itd.) są odkryte – dostępne dla maszynerii transkrypcyjnej (euchromatyna), a inne zakryte – niedostępne (heterochromatyna). Każda komórka ma swój wzorzec fragmentów DNA dostępnych i zakrytych dla maszynerii transkrypcyjnej. Ta dostępność lub jej brak zależy np. od metylacji DNA. Metylacja DNA jest modyfikacją bardzo trwałą. Nawet chromosomy (ich fragmenty) są inaczej położone w komórkach różnego typu. Te które są ukryte głębiej w jądrze nie są tak aktywne transkrypcyjnie (ich geny nie dochodzą do głosu), jak z tych chromosomów które są bliżej błony jądrowej. Z chromosomów bliżej błony jądrowej (czy ich fragmentów bliżej błony) łatwiej powstaje mRNA. Metylacja DNA czy położenie chromosomów w jądrze to więc przykłady różnic epigenetycznych, które zapobiegają spontanicznej czy przypadkowej przemianie jednej komórki w inną (np kardiomiocyta w komórkę wątroby). Właśnie zmiany w metylacji DNA, czy upakowania chromatyny, albo nawet położenia chromosomów w interfazowych jądrach komórkowych (jądra pomiędzy podziałami, mitozami) to zjawiska/procesy epigenetyczne. Różne rodzaje komórek mają charakterystyczne to wszystko, jak i inne wzorce epigenetyczne. DNA tych komórek ma taką samą sekwencję DNA, ale zachodzi w nich, w konsekwencji różnic epigenetycznych ekspresja innych genów. W komórkach kobiet jeden z chromosomów X jest tak ściśle upakowany, że transkrypcja w oparciu o jego DNA w ogóle nie jest możliwa. Proces który do tego prowadzi nazywa się lionizacją, a ten chromosom, który jest zlionizowany (zlyonizowany, zjawisko odkryła Mary F. Lyon) ciałkiem Barra. Czy wobec tego, próby zmieniania przez biotechnologów jednych komórek w inne, to zadanie tak samo beznadziejne, jak kiedyś zadanie alchemików? Okazuje się jednak, że nie. Chociaż można to zrobić raczej przez etap pośredni, wymagający otrzymania wszechstronnych komórek macierzystych, a nie bezpośrednio. Jak to jest możliwe i jak to się stało że biotechnolodzy przekonali świat, że nie są alchemikami, chociaż jeszcze dwadzieścia lat temu niektórzy coś takiego im zarzucali?

Obserwacje sugerujące, że można wymusić przeobrażenie komórki jednego typu w inną komórkę

Pierwsze zjawisko sugerujące, że jest to możliwe, zaobserwowano u płazów, takich jak salamandry czy aksolotle. U tych zwierząt możliwa jest bardzo sprawna regeneracja. Dochodzi do niej dzięki temu, że komórki dojrzałe – głównie fibroblasty – zachowują się tak, jakby „cofały się w rozwoju” do stanu komórki zarodkowej, czyli takiej, z której mogą powstać dowolne komórki organizmu. To dzięki temu, salamandrze odrośnie utracona kończyna. Zdolności regeneracyjne aksolotli są zadziwiające. Potrafią odtworzyć część mózgu. Jedno ze zjawisk, od którego to zależy, nie polega na bezpośrednim przejściu jednej komórki w drugą, ale na przejściu poprzez stan pośredni komórki macierzystej, czyli takiej, z której można otrzymywać różne komórki dojrzałe (poniżej opisano rodzaje komórek macierzystych). Procesowi temu towarzyszy proliferacja namnażania się komórek podobnych do zarodkowych (pluripotentnych komórek macierzystych). Dzięki temu w procesie odbudowy nie chodzi o przekładania cegieł (komórek) z jednej części organizmu salamandry w drugi i zmienianie jednego rodzaju w inny rodzaj cegieł, ale komórki z których powstają te cegły szybko się namnażają a potem dopiero do potrzebnych cegieł różnicują. Ludzie, czy ogólniej ssaki, nie mają niestety takich możliwości regeneracyjnych. Dlaczego ich nie mamy to temat na inny artykuł. Jednak kolejny sygnał, że bariery zabezpieczające przed przechodzeniem jednych komórek w inne nie są całkowicie szczelne, otrzymano w czasie badań ssaków. Wskazówka ta pojawiła się, kiedy próbowano klonować zwierzęta. Zauważono, że nawet u ssaków klonowanie jest możliwe. W czasie klonowania w komórce jajowej umieszcza się jądro komórkowe z komórki dojrzałej organizmu klonowanego. Mimo to (chociaż rzadko) proces klonowania udaje się nawet u ssaków (np. owca Dolly). Pojawia się tu jednak pytanie. Jak to jest możliwe, wobec tego, co opisano tu wcześniej? Przecież w trakcie klonowania w oocycie umieszcza się DNA z komórki dojrzałej – czyli takie, które jest zmienione chociażby metylacyjnie. Chromatyna jest upakowana, a chromosomy w jądrze interfazowym mają położenie charakterystyczne dla komórki dojrzałej, a nie zarodkowej. Generalnie to, co jest typowe dla komórek macierzystych zarodka, to generalne rozluźnienie chromatyny. DNA pobrane do klonowania to DNA jądrowe, konkretnej dojrzałej komórki, nie jest to DNA komórki zarodkowej w sensie jego statusu epigenetycznego. Co takiego znajduje się w oocycie, że taki proces klonowania i „odmłodzenia DNA” jest możliwy? 

Jak dokonano przeobrażenia komórek skóry czy osadu moczu w dowolne komórki człowieka?

Na powyższe pytanie – po eksperymentach prowadzonych metodą prób i błędów – próbowali odpowiedzieć Japończycy. Jeden z nich otrzymał nawet za te i późniejsze badania nagrodę Nobla. Japończycy doszli do wniosku, że oocyt nie może mieć jakiegoś magicznego sposobu „odmładzania DNA” komórki dojrzałej, tylko musi dysponować jakąś maszynerią, która to umożliwia. Wykorzystywali więc zestawy białek, działających w oocytach. Nie były to dowolne białka, ale tzw. czynniki transkrypcyjne. Stężenie tych białek podnosili w komórkach dojrzałych. Zmienili więc całkowicie podejście. To nie jądro (DNA) komórki dojrzałej umieszczali w oocycie, ale zwiększali stężenie wybranych białek, które działają w oocycie w komórkach dojrzałych. Zwiększania stężenia wybranych białek dokonali metodami inżynierii genetycznej. Po przetestowaniu dziesiątek zestawów białek, wyselekcjonowano zestaw czterech czynników transkrypcyjnych. Zestaw ten umożliwiał coś, co można porównać z „odmłodzeniem DNA” – zmienieniem np. jego statusu metylacyjnego z takiego obserwowanego w fibroblaście na taki, który występuje w komórce zarodkowej (pluripotentnej). Później okazało się, że ten zestaw czynników transkrypcyjnych inicjował tak poważne zmiany epigenetyczne, że po dłuższym czasie (miesiące) w komórkach żeńskich nawet ciałko Barra (zlionizowany chromosom X) ulegało reaktywacji transkrypcyjnej. „Udało się więc nawet odsupłać chromosom X zmieniony w ciałko Barra, chociaż ten był prawie tak zasupłany jak węzeł gordyjski”. Komórka dojrzała przyjmuje więc fenotyp/zdolności komórki zarodkowej. Proce lionizacji losowo wybranego chromosomu X kończy się na tym etapie zarodkowym, kiedy u człowieka występują około 64 komórki. W tym momencie istniejące komórki mogą zmienić się (zostać zróżnicowane) do właściwie dowolnej z ponad 200 typów komórek człowieka, ale nie mogą już być zalążkiem (różnicować się do) całego organizmu. Nie można więc powiedzieć, że komórka taka jak komórka wątroby, przeszła bezpośrednio w komórkę układu nerwowego w wyniku tego typu działań. Dzieje się to poprzez wykorzystanie etapu pośredniego, w którym pojawiła się wszechstronna komórka macierzysta. Opisany tu w uproszczeniu proces przeprowadzenia komórki dojrzałej w komórkę zarodkową (konkretnie indukowaną pluripotentną komórkę macierzystą) nazwano reprogramowaniem. W praktyce nie jest to literalnie cofanie się krok po kroku komórki do stanu zarodkowego, ale pewnego rodzaju reset epigenetyczny (zmiana statusu metylacyjnego DNA, upakowania chromatyny, położenia chromosomów w jądrze interfazowym itp). W procesie tym mogą być wykorzystane nawet komórki znajdujące się w osadzie moczu. Otwiera to oczywiście różne możliwości terapeutyczne. Dzięki temu, otrzymać można komórki autologiczne (od samego dawcy), przydatne w transplantologii. Komórki takie nie będą odrzucane, tak jak allogeniczne (od innego dawcy).

Rycina 2. Kolonia komórek iPSc otrzymana z komórek osadu moczu. Widoczna w mikroskopie fluorescencyjnym i po barwieniu immunocytochemicznym (ICC). Po zastosowaniu ICC widoczne są sygnały wynikające z obecności białek (OCT4, SOX-2) przeprowadzających (reprogramujących) komórki dojrzałe w komórki macierzyste (iPSc) i będących markerami komórek macierzystych. Z kolekcji zdjęć zespołu, w którym pracuje autor publikacji.

Więcej przykładowych wyników i wyjaśnień, chociażby w publikacji, której autor tego tekstu jest współautorem. W publikacji pokazano jak otrzymać pluripotentne komórki macierzyste z komórek skóry i osadu moczu. Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system | Stem Cell Research & Therapy | Full Text (biomedcentral.com). Próbuje się także prowadzić innego rodzaju przekształcenia różnych komórek w zupełnie inne. Odkryto inne sposoby reprogramowania komórek dojrzałych do indukowanych komórek pluripotentnych. Opisany tu proces reprogramowania komórek dojrzałych do indukowanych pluripotentnych komórek macierzystych jest jednak najlepiej poznany i dość skuteczny.

Podsumowanie

Porównanie przemienienia ołowiu w złoto do przemiany np. komórki nerwowej w komórkę wątroby jest bardzo luźne. Po pierwsze występuje w biologii bardzo specyficzny etap pośredni – komórka, z której można otrzymać dowolne komórki organizmu. Jest jeszcze jedna ważna różnica między biotechnologiczną a fizykochemiczną przemianą. Wydajność procesu przeprowadzania komórki dojrzałej w komórkę podobną do zarodkowej jest bardzo niska. Jest to mniej, niż promil komórek poddawanych wpływowi czynników transkrypcyjnych (komórek pobranych ze skóry czy z osadu moczu).Tylko że biotechnologowi to nie przeszkadza. Bo nawet jedna otrzymana komórka macierzysta (iPSc) namnaża się in vitro i tworzy łatwe do wyodrębnienia kolonie (rycina 2), a atom złota otrzymany za wielką cenę z atomu ołowiu namnażał się nie będzie. Czy biotechnolodzy są więc jak alchemicy z obrazu Pietera Brueghela Młodszego? Nie, biotechnolodzy nie kłamią, że z komórek dojrzałych (w tym z komórek osadu moczu) da się otrzymać komórki macierzyste, z których można właściwie później uzyskać dowolne komórki organizmu. Jakkolwiek otrzymywanie neuronów czy kardiomiocytów z komórek osadu moczu czy skóry, nawet z uwzględnieniem etapu pośredniego (komórek macierzystych iPSc), może zakrawać na coś nieprawdopodobnego, to robi się to już właściwie rutynowo. Proces ten powoli zaczyna znajdować zastosowanie w medycynie. Coraz trudniej jest w otaczającym nas świecie odróżnić obietnice bez pokrycia od tych, które zostaną zrealizowane.

Rodzaje komórek macierzystych u człowieka:

Totipotentne komórki macierzyste. Są to komórki, z których można otrzymać cały organizm. W przypadku człowieka są to komórki od zygoty do moruli. Zygota to jedna komórka. Morula to 16 komórek (blastomerów).

Pluripotentne komórki macierzyste. Są to komórki, które można zróżnicować do dowolnych komórek organizmu, ale nie można już otrzymać całego organizmu.

Multipotentne komórki macierzyste. Są to komórki, z których można otrzymać pewną grupę komórek dojrzałych. Przykładowo z hematopoetycznej komórki macierzystej można otrzymać komórki krwi. Z neuralnej komórki macierzystej można otrzymać głównie neurony, astrocyty i oligodendrocyty.

Witamina B12: kłopotliwa spuścizna ewolucji (3)

Jak powstaje witamina B12?

W poprzednim wpisie napisałem o tym, do czego potrzebna jest witamina B12 oraz w jaki sposób jest wchłaniana w naszym organizmie. Ale skąd się bierze? Biorąc pod uwagę złożoną budowę kobalaminy, jej otrzymanie na drodze syntezy chemicznej było nie lada wyzwaniem. Ale w roku 1976 zespołom Alberta Eschenomosera z Politechniki w Zurychu i Roberta Woodwarda (Harvard University) udało się dokonać syntezy witaminy B12. Prekursorami były proste substancje, takie jak etylometyloketon, butadien czy kamfora. Synteza wymagała 70 kroków i zajęła 11 lat, a pracowało przy niej ponad 100 osób. Był to ogromny sukces chemików-organików, którzy pokazali, że są w stanie zsyntetyzować i oczyścić tak skomplikowaną cząsteczkę. Komercyjnie nie miało to jednak większego sensu, bo okazało się, że bakterie są w stanie produkować witaminę B12 o wiele taniej. Dziś jest ona produkowana na skalę przemysłową właśnie przez bakterie, przede wszystkim przez genetycznie zmodyfikowany szczep Pseudomonas denitrificans. Witamina B12 powstaje w ramach procesu składającego się z 30 kroków (to znaczy, tyle enzymów potrzeba, żeby przetworzyć substancje wyjściowe, takie jak bursztynylo-CoA i glutaminian w końcowy produkt). Oczywiście konieczny jest dodatek soli kobaltu, bo bez niego witamina B12 nie powstanie. Produkcja zachodzi w temperaturze 30oC w fermentorach o objętości 120 m3 w ciągu 7-8 dni, a końcowe stężenie kobalaminy to ok. 150 mg/litr. Pożywka to ekstrakt drożdżowy i sacharoza. Po oczyszczeniu i krystalizacji witamina jest gotowa do użycia.

W 2023 r. przedstawiono metodę syntezy kobalaminy w tzw. systemie „cell-free” (to znaczy, bez udziału komórek), za pomocą enzymów wyprodukowanych przez genetycznie modyfikowane bakterie Escherichia coli. Geny kodujące te enzymy uzyskano z bakterii należących do 26 gatunków bakterii (jak np. Salmonella typhimurium, czy Bacillus subtlis), a enzymów było w sumie 36. Substancją wyjściową był kwas 5-aminolewuliowy. Reakcja zachodziła w ciągu 14 godzin, zastosowano 4 etapy syntezy (to znaczy, czterokrotnie zmieniano zestawy enzymów), a końcowe stężenie kobalaminy wynosiło 5 mg/litr. Być może taka jest właśnie przyszłość biotechnologii: synteza skomplikowanych związków za pomocą uprzednio otrzymanych enzymów (Ryc. 1)?

Ryc. 1. Schemat syntezy witaminy B12 za pomocą enzymów otrzymanych w genetycznie modyfikowanych bakteriach Escherichia coli.  Źrodło: Kang Q. et al., Nature 2023, 14:5177. Licencja CC BY 4.0.

Czym grozi nam brak witaminy B12?

Zapotrzebowanie dorosłego człowieka na witaminę B12 wynosi ok. 2,4 µg dziennie (u kobiet w ciąży i karmiących piersią nieco więcej). W porównaniu do innych witamin jest to stosunkowo niewiele: zapotrzebowanie na witaminę B1  to ok. 1 mg/dobę, a witaminę B3  ok. 15 mg/dobę. W organizmie człowieka (głównie w wątrobie) jest ok. 3 mg witaminy B12, co stanowi kilkuletni zapas. Uważa się jednak, że ok. 1-2% populacji w krajach rozwiniętych (dużo więcej w krajach biednych) cierpi na niedobór witaminy B12. Ze wzglądu na spory zapas tej witaminy w wątrobie, objawy takiego niedoboru mogą pojawić się dopiero po kilku latach.

Najczęstszym skutkiem tego niedoboru są zaburzenia układu nerwowego oraz anemia złośliwa, zwana też niedokrwistością Addisona-Biermera. Jej objawy to obniżenie liczby erytrocytów i poziomu hemoglobiny, a także wzrost objętości krwinki czerwonej (mean corpuscular volume, MCV) Pojawiają się też neutrofile o charakterystycznie rozczłonkowanym jądrze, co jest dobrze widoczne w rozmazie krwi. Przyczyną jest upośledzenie syntezy nukleotydów wchodzących w skład DNA: jeżeli ich brakuje, komórki nie mogą zakończyć podziałów komórkowych, co powoduje wzrost objętości komórek. Komórki takie, nazywane megaloblastami, są obecne w krwiobiegu u osób dotkniętych tą chorobą.

Jaka jest przyczyna tego zjawiska? Do syntezy DNA potrzebne są nukleotydy, które nie powstaną bez udziału witaminy B12 oraz kwasu foliowego. Jeżeli ich brakuje, wzrost komórek oraz ich podziały zostają wstrzymane. Dotyczy to przede wszystkim komórek, które najszybciej się dzielą, a do takich należą komórki szpiku, w którym powstają krwinki czerwone. Dlatego w warunkach niedoboru witaminy B12 produkcja erytrocytów spada.

Niedobór witaminy B12 może też powodować zmiany w układzie nerwowym dające objawy neurologiczne, które zazwyczaj poprzedzają objawy ze strony układu krwiotwórczego. Są to zaburzenia czucia, mrowienie w końcach palców, osłabienie, zaburzenia równowagi, a później także zaburzenia poznawcze, apatia i stany depresyjne.

Dlaczego może brakować witaminy B12?

Jeżeli spożywamy wystarczającą ilość witaminy B12, to przeważnie przyczyną jest niedobór czynnika wewnętrznego, który jest produkowany przez komórki żołądka. Czynnika tego może brakować w sytuacji, kiedy komórki żołądka ulegają zniszczeniu przez układ odpornościowy. Dzieje się tak w przypadku chorób autoimmunizacyjnych, czyli wtedy, gdy komórki układu odpornościowego niszczą inne komórki (w tym przypadku, komórki okładzinowe żołądka).  Resekcja żołądka, np. w wyniku choroby nowotworowej, też uniemożliwia przyswajanie witaminy B12 na drodze pokarmowej.

Niedobór witaminy B12 zdarza się też u osób stosujących dietę wegańską, ponieważ pokarmy roślinne jej na ogół nie zawierają. Wyjątkiem są niektóre glony, a także grzyby, jak np. shitake czy kurki (grzyby to nie rośliny). Kobalamina jest w nich pochodzenia bakteryjnego. Dlatego w diecie wegańskiej zaleca się suplementację witaminy B12­. Gorzej jest w przypadku braku czynnika wewnętrznego: jedyna rada wówczas to domięśniowe zastrzyki z witaminy B12.

Również przewlekłe choroby układu pokarmowego, jak celiakia czy choroba Leśniowskiego-Crohna mogą powodować upośledzone wchłanianie witamin B12. Niektóre leki, jak pochodne metforminy stosowane w leczeniu cukrzycy albo inhibitory pompy wodorowej stosowane w leczeniu żołądka też mogą powodować takie skutki.

Niedobór witaminy B12 zdarza się też w przypadku zakażenie tasiemcem (np. bruzdogłowiec szeroki, Diphyllobothrium latum). Jest tak dlatego, że tasiemiec, jak każde zwierzę, potrzebuje witaminy B12 i zabiera ją gospodarzowi.

Czy nadmiar witaminy B12 może być szkodliwy? Raczej nie, bo skomplikowany system wchłaniania z udziałem wielu białek powoduje, że „nadmiarowa” witamina jest wydalana z moczem.

Dlaczego potrzebujemy witaminy B12, skoro rośliny i grzyby radzą sobie bez niej?

Nie da się ukryć, że witamina B12 jest dla nas problematyczną cząsteczką. Nie możemy jej syntetyzować, wchłanianie jest skomplikowanym procesem wymagającym wielu białek, a jedynym źródłem są pokarmy pochodzenia zwierzęcego. A co z roślinożernymi zwierzętami? U przeżuwaczy, takich jak krowy lub owce, kobalamina jest produkowana przez bakterie w komorze żołądka zwanej żwaczem. Warunkiem jest jednak obecność soli kobaltu w glebie, na której rośnie trawa służąca jako pasza. W niektórych regionach Australii i Nowej Zelandii stwierdza się chorobę owiec o nazwie  choroba buszu (bush sickness), która jest spowodowana niedoborem kobaltu w glebie. Bakterie ze żwacza, przy całej ich sprawności w syntezie kobalaminy, nie są w stanie wyprodukować jej bez kobaltu. Objawy są podobne do anemii złośliwej (Ryc. 2).

Ryc. 2. Owce z niedoborem kobaltu („bush sickness”). Źródło: Wikipedia. Licencja CC BY 4.0.

Inne roślinożerne zwierzęta (te, które nie są przeżuwaczami, czyli np. króliki czy bobry) radzą sobie zjadając własne odchody. Wchłaniają w ten sposób witaminę B12 wyprodukowaną przez bakterie żyjące w ich jelicie grubym. Bakterie z naszego jelita grubego też produkują witaminę B12, ale nie możemy jej wchłaniać, bo jelito kręte znajduje się przed jelitem grubym. Jest to jeden z paradoksów związanych z tą witaminą.

A w jaki sposób witamina B12 powstała miliardy lat temu? O tym w następnym wpisie.

Literatura dodatkowa

https://www.nature.com/articles/s41467-023-40932-4

Synteza witaminy B12 za pomocą 36 enzymów bakteryjnych

https://www.nature.com/articles/s41467-023-40932-4