Fizjologia smaku, czyli dlaczego jedne rzeczy nam smakują, a inne nie (1)

Tomasz Kubowicz niedawno napisał o najbardziej gorzkiej substancji na świecie, za jaką uważa się Bitrex. Ale jak to jest, że czujemy gorzki smak? I dlaczego możemy czuć różne smaki? Postaram się to wyjaśnić we wpisie poniżej.

Dlaczego czujemy smak?

Za odczuwanie smaku odpowiadają kubki smakowe, które znajdują się głównie (chociaż nie tylko) w jamie ustnej. Każdy kubek smakowy zawiera wyspecjalizowane komórki, które po związaniu jakiejś substancji chemicznej (np. glukozy) uruchomiają przekazanie sygnału do mózgu. Jeżeli w ustach zmienia się stężenie soli lub jonów wodorowych, to zmiany te również są wykrywane przez odpowiednie komórki obecne w kubkach smakowych.

Kubki smakowe i brodawki smakowe

Kubki smakowe znajdują się w nabłonku wielu narządów, chociaż najwięcej ich wchodzi w skład brodawek znajdujących się na języku. Można powiedzieć, że język jest głównym organem wyczuwającym smak. Brodawki językowe sprawiają, że powierzchnia języka jest szorstka. Istnieją cztery rodzaje brodawek językowych: nitkowate, grzybopodobne, liściaste i obwodowe. Brodawek nitkowatych jest najwięcej; odpowiadają one za mechaniczną stymulację języka, przewodzą impulsy bólowe, ale nie zawierają kubków smakowych. Te są obecne w pozostałych trzech rodzajach brodawek.

Brodawki grzybopodobne znajdują się na grzbietowej części języka, a najwięcej ich jest na jego przedniej części. Jest ich w sumie około 200. Zawierają ok. 25% wszystkich kubków smakowych.

Brodawki liściaste znajdują się na bocznej stronie języka. Jest ich nie więcej niż 5 po każdej stronie. Zawierają ok. wszystkich 25% wszystkich kubków smakowych.

Brodawki obwodowe znajdują się na tylnej części języka. Jest ich 8 – 12. Zawierają ok. 50% wszystkich kubków smakowych.

Każda brodawka może zawierać od kilku do ponad 100 kubków smakowych. W sumie kubków smakowych mamy ok. 4000 (na pewno nie więcej niż 8000). I to właśnie one powodują, że czujemy smak tego, co jemy (Ryc. 1).

Ryc. 1. Rozmieszczenie brodawek na języku oraz schemat budowy kubka smakowego. Według: Jaime-Lara R.B. et al., Physiol. Rev. 2023, 103: 855–918. Licencja CC BY 4.0.

Receptory smakowe

Każdy kubek smakowy zawiera 150 – 300 komórek receptorowych, a każda komórka receptorowa zawiera tylko jeden typ receptora. Receptorami mogą być kanały jonowe lub receptory związane z białkiem G (G protein-coupled receptors, GPCR). Te ostatnie to duża rodzina białek transmembranowych (czyli znajdujących się w błonie komórkowej). Białka te po związaniu zewnątrzkomórkowego liganda (czyli czynnika, który jest swoiście rozpoznawany) powodują aktywację białka G, polegającą na zastąpieniu GDP przez GTP (odpowiednio, gunazyno-5’-difosforan i guanozyno-5’-trifosforan). Tak zaktywowane białko G może aktywować inne białka, w tym cyklazę guanylową, co powoduje przesłanie sygnału do komórki, co z kolei skutkuje zmianami w metabolizmie. Jest wiele receptorów związanych z białkiem G, należą do nich m.in. receptory dla adrenaliny, serotoniny czy opioidów. Większość receptorów smakowych też należy do tej rodziny.

Drugim rodzajem receptorów smakowych są kanały jonowe. Są to również białka transmembranowe, a ich rolą jest przenoszenie jonów przez błonę komórkową. 

Ile smaków możemy wyczuć? Do niedawna uważano, że podstawowych smaków jest pięć: słony, słodki, gorzki, kwaśny i umami (z japońskiego „smakowity”). Dziś uważa się, że jest jeszcze szósty smak, który można nazwać tłustym, czyli związanym z obecnością tłuszczów. Każdy z tych smaków rozpoznawany jest przez określony typ komórki, która ma na powierzchni odpowiednie receptory. Ponieważ smaków jest sześć, to jest również sześć typów komórek receptorowych. Samych receptorów jest jednak więcej, bo o ile np. smak kwaśny jest rozpoznawany tylko przez jeden typ receptora, to smak gorzki przez 25 rodzajów (o czym piszę w dalszej części).

Receptory te są pokazane na Ryc. 2. Białka typu GPCR odpowiadają za wyczuwanie smaków: słodkiego, gorzkiego, umami i tłustego (częściowo, bo smak tłusty ma jeszcze drugi rodzaj receptora, którym jest kanał jonowy). Kanały jonowe odpowiadają za wyczuwanie smaku kwaśnego, słonego i tłustego (drugi receptor).

Poniżej krótka charakterystyka receptorów dla poszczególnych smaków.

Smak kwaśny

Kanał jonowy Otop1 (otopterin 1) jest białkiem, które przenosi jony wodorowe przez błonę komórkową. Jeżeli w ustach mamy dużo jonów wodorowych (czyli pH jest niskie), białko Otop1 przepuszcza je do wnętrza komórki, co powoduje wysłanie sygnału do mózgu, że mamy w ustach coś kwaśnego. Tu ciekawostka: każdy chemik zauważy, że o ile możemy wykrywać kwaśny smak powodowany przez jony wodorowe (H+), to nie mamy receptora dla jonów hydroksylowych (OH). Dlatego substancje o zasadowym pH (np. mydło) wydają się nam obrzydliwe.

Smak słony

Kanały jonowe o nazwach ENaC i TRPV1 przenoszą jony sodowe przez błonę komórkową i odpowiadają za wyczuwanie smaku słonego. Ten drugi jest również receptorem dla kapsaicyny, czyli piekącej substancji zawartej w papryczkach chili. Kapsaicyna aktywuje więc po części receptory smaku słonego, co pozwala na zastąpienie szkodliwej w nadmiarze soli przez ostre przyprawy (uwaga dla kucharzy).

Smak tłusty

Białko o nazwie CD36 należące do rodziny kanałów jonowych przenosi kwasy tłuszczowe do wnętrza komórki i wspólnie z białkiem GPR120 (które należy do rodziny GPCR) odpowiada za wyczuwanie tłuszczów w pokarmie. Ściśle rzecz biorąc, nie wyczuwamy tłuszczów, ale wchodzące w ich skład kwasy tłuszczowe. Reakcję hydrolizy tłuszczów do glicerolu i kwasów tłuszczowych przeprowadzają obecne w ślinie enzymy z rodziny lipaz.

Smak słodki i umami

Smak słodki znamy wszyscy, ale czym jest smak umami? Został odkryty przez japońskiego badacza Kikunae Ikedę, który w 1908 r. zauważył, że smak bulionu z wodorostów różni się od podstawowych czterech smaków. Nazwał go „umami”, co po japońsku znaczy „esencja pyszności”. Przeprowadzone przez niego analizy chemiczne wykazały, że za ten smak odpowiada kwas glutaminowy, który jest jednym z podstawowych aminokwasów. Dziś jego sól sodowa (lub potasowa albo magnezowa) jest stosowana powszechnie jako wzmacniacz smaku i możemy ją znaleźć w większości przetworzonych produktów spożywczych (kody E620-E625).

Za wykrywanie smaku słodkiego i umami odpowiadają kompleksy złożone z dwóch białek. W ich skład wchodzi zawsze białko T1R3 oraz białko T1R2 (dla smaku słodkiego) lub T1R1 (dla umami). Tylko obecność obu białek jednocześnie powoduje, że możemy wyczuć te smaki. U kotów miała miejsce mutacja w genie kodującym receptor T1R2; białko kodowane przez taki gen jest defektywne (brakuje długiego fragmentu) i nie może dalej przekazywać sygnału. Dlatego koty nie lubią słodyczy. Przypuszczalnie smakują im trochę tak, jak nam mydło.

Ryc. 2. Receptory smaku i niektóre cząsteczki, które je aktywują. Według: Jaime-Lara R.B. et al., Physiol. Rev. 2023, 103: 855–918. Licencja CC BY 4.0.

Smak gorzki, czyli jak uniknąć trucizn

Wśród receptorów smaku najwięcej jest receptorów smaku gorzkiego: jest ich cała rodzina o nazwie T2R (używa się też nazwy TAS2R). U człowieka znanych jest 25 genów kodujących funkcjonalne receptory smaku gorzkiego, ale płazy mają ich ok. 60, a gady 40. U ssaków bywa różnie, najwięcej mają ich zwierzęta wszystkożerne i roślinożerne (np. krowa 22, mysz 36), a najmniej mięsożerne (np. fretka 12, niedźwiedź polarny 14, pies 16). Dlaczego receptorów dla gorzkiego smaku jest aż tyle? Chronią przed zatruciem, ponieważ większość trucizn ma gorzki smak. Im więcej receptorów i im bardziej są one zróżnicowane, tym większa szansa, że wykryjemy dany rodzaj trucizny, bo dana substancja może aktywować tylko jeden rodzaj receptora. A jakie organizmy są największym producentem trucizn? Rośliny, które w ten sposób bronią się przed zjadaniem. Dlatego zwierzęta roślinożerne mają najwięcej rodzajów receptorów gorzkiego smaku.

Fenylotiokarbamid jako test na gorzki smak

Przykładem gorzkiej substancji wykrywanej przez jeden rodzaj receptora jest fenylotiokarbamid (PTC). W 1931 r. Arthur Fox, chemik z firmy Du Pont, przypadkowo wypuścił w powietrze chmurę kryształków tego związku i zauważył, że o ile jego koledzy uskarżali się na jego gorzki smak, to on sam nie czuł nic. Szersze badania wykazały, że niezdolność do wykrywania gorzkiego smaku PTC jest cechą recesywną (to znaczy, trzeba mieć dwa takie allele żeby taka cecha miała miejsce). Ok. 30% ludzi ma taką cechę (angielskie określenie: „non-taster”), czyli nie czuje gorzkiego smaku PTC. Przyczyną jest mutacja w genie T2R38 (jednym z genów kodujących receptory smaku gorzkiego), która powoduje, że białko jest nieaktywne i po związaniu cząsteczki nie może przesyłać sygnału do mózgu. Osoby, które mają taką mutacje w obu allelach tego genu, nie czują też limoniny, która nadaje gorzki smak cytrusom (najwięcej jest jej w grejpfrutach). Są też udokumentowane związki między takimi mutacjami i zamiłowaniem do niektórych warzyw o gorzkim smaku, ale o tym napiszę w następnym odcinku (Ryc. 3).

Ryc. 3. Fenylotiokarbamid (PTC). Źródło: Wikipedia, domena publiczna.

Trucizny i receptory dla nich

Jakie substancje mają gorzki smak i jakie receptory je rozpoznają? Chinina, niezwykle gorzka substancja (nieszkodliwa w niewielkich, ale trująca w dużych ilościach) jest rozpoznawana przez białka T2R39 i T2R46. Amigdalina, trujący związek obecny m.in. w pestkach brzoskwiń i morel, jest rozpoznawana przez białko T2R16. Pisał o niej Lucas Bergovsky.

Strychnina, silnie trujący związek o bardzo gorzkim smaku, jest rozpoznawana przez receptor T2R46. Ale np. silnie trująca solanina z ziemniaka nie jest rozpoznawana przez żaden z ludzkich receptorów, i w związku z tym w zasadzie nie ma smaku. Zatrucia solaniną zdarzają jednak się rzadko, bo bulwy ziemniaka przeważnie jej nie zawierają (pisał o tym Mirosław Dworniczak).

Wśród roślin uprawianych przez człowieka na duża skalę jedna może być naprawdę niebezpieczna: jest to maniok jadalny (Manihot esculenta). Pochodzi z Brazylii, a dziś uprawiany jest powszechnie w Afryce i spożywany w postaci mąki zwanej tapioką lub kassawą (Ryc. 4).

Ryc. 4. Bulwy manioku. Źródło: Wikipedia, David Monniaux. GNU Free Documentation License.

Maniok zawiera dwa gorzkie alkaloidy o nazwach linamarina i lotaustralina, które zapewniają ochronę wobec szkodników. Podobnie jak w amigdalinie są w niej grupy nitrylowe, które mogą uwalniać cyjanowodór. Związków tych można się pozbyć w wyniku gotowania lub pieczenia, a także po 24-godzinnym wymoczeniu w  wodzie. Pomimo to, zatrucie alkaloidami zawartymi w manioku zdarza się dość często i powoduje chorobę o nazwie konzo (w Afryce co najmniej 100 000 przypadków rocznie). Objawy to uszkodzenie nerwów ruchowych (w języku Yaka konzo to „związane nogi”) i postępujący paraliż. Wiele zależy tu od indywidualnej zdolności wyczuwania gorzkiego smaku: jedne osoby czują go lepiej, a inne gorzej, i to właśnie one bardziej narażone są na zatrucie (Ryc. 5).

Ryc. 5. Pacjenci z objawami konzo w Demokratycznej Republice Kongo (A) i zawartość trujących glikozydów w manioku jako funkcja zdolności do wyczuwania gorzkiego smaku przez różne osoby (B). Źródło: Wooding S.P. et al., Evol. Medicine Pub. Health 2021, 9: 431-447. Licencja CC BY 4.0.

I tu przechodzimy do indywidualnych zdolności percepcji smakowych, czyli do genetyki smaku. Ale o tym, a także o rzekomej „mapie języka”, opowiem w następnych odcinkach.

Literatura dodatkowa

Molekularne podstawy smaku:

https://doi.org/10.1152/physrev.00061.2021

Genetyczne różnice w wyczuwaniu smaku:

https://doi.org/10.1146/annurev-food-032519-051653

Słodki smak u kotów

https://doi.org/10.1093/jn/136.7.1932S

Gorzki smak i jego znaczenie

https://doi.org/10.1093/emph/eoab031

Maminsynki i córeczki wielu tatusiów, czyli co decyduje o płci pszczół

W moim poprzednim wpisie opowiedziałam o tym, że samce i samice pszczół znacznie się od siebie różnią pod względem genetycznym. Dla przypomnienia: samce pszczół (trutnie) posiadają pojedynczy zestaw chromosomów (fachowo mówiąc – są haploidalne), gdyż rozwijają się z niezapłodnionej komórki jajowej, zaś samice (robotnice i matki) rozwijają się z zapłodnionej komórki jajowej i wobec tego mają podwójny zestaw informacji genetycznej – pochodzący zarówno od matki jak i od ojca, i są diploidalne. Wspomniałam również, że możliwym wytłumaczeniem powstania takiego systemu rozmnażania i determinacji płci jest to, że pojedynczy zestaw informacji genetycznej u samców powoduje, że są one szczególnie wrażliwe na mutacje. Skutki mutacji upośledzających lub wyłączających funkcję danego genu upośledzają lub wręcz eliminują danego trutnia, gdyż nie mogą być maskowane obecnością drugiej (prawidłowej) kopii tego genu (tak jak ma to miejsce u samic), i w związku z tym mutacje takie nie są przekazywane przez trutnie kolejnym pokoleniom pszczół.

Diploidalne trutnie

Z powodu mojego ewidentnego „pszczołocentryzmu”, zawężonego jeszcze dodatkowo do pszczoły miodnej, Czytelnik mógłby odnieść wrażenie, że ten specyficzny sposób rozmnażania dotyczy właśnie tego gatunku. A tak nie jest – system haplodiploidalny, oparty na „pojedynczości” informacji genetycznej samców i „podwójności” samic, jest szeroko rozpowszechniony i dotyczy owadów błonkoskrzydłych (pszczoły, osy, mrówki), roztoczy, wciornastków, niektórych chrząszczy i wrotków – około 20% wszystkich gatunków zwierząt.  I właśnie obserwacja innych gatunków owadów (a konkretnie pasożytniczych os) doprowadziła do odkrycia, że mogą również powstawać, choć rzadko, samce posiadające podwójny zestaw chromosomów. W przypadku pszczoły miodnej samce takie nie przeżywają, gdyż ich larwy są zabijane przez robotnice zaraz po wykluciu. Eliminacja tych trutni przez robotnice została po raz pierwszy opisana przez Jerzego Woyke (kolejny, po wspomnianym w poprzednim wpisie Janie Dzierżoniu, polski wątek w badaniach na temat płci u pszczół). Nie do końca wiadomo, w jaki sposób robotnice poznają, że wykluta larwa jest diploidalnym trutniem – przypuszczalnie wyczuwają to węchem, choć mimo podejmowanych badań, hipoteza ta nie została do tej pory zweryfikowana.

Gen csd

Jaki jest w takim razie mechanizm determinacji płci u pszczół i w jaki sposób jest on na ogół związany z ich haplo- i diploidalnością? Nie omawiając kolejnych kroków wieloletnich badań, pozwolę sobie przejść od razu do ich wyniku. Okazało się zatem, że jest za to odpowiedzialny jeden gen – csd (ang. complementary sex determiner). W populacji pszczół występują liczne warianty genu csd. Konkretna pszczoła, jak pamiętamy, może powstać z zapłodnionej komórki jajowej, posiada zatem podwójny zestaw informacji genetycznej i w związku z tym posiada dwie kopie genu csd. Jeżeli te kopie genu csd są od siebie różne,to powstaje samica, a jeśli takie same – diploidalny truteń (ten, który zostanie zabity przez robotnice). Pszczoły powstające z niezapłodnionych komórek jajowych, posiadające pojedynczy zestaw informacji genetycznej, a zatem tylko jedną kopię genu csd, rozwijają się jako „zwykłe” trutnie (Rycina 1). A co konkretnie robi csd? Badania prowadzone od około 20 lat, których kolejna część została opublikowana dosłownie dwa tygodnie temu, pokazują, że białko kodowane przez gen csd tworzy trójskładnikowe kompleksy „samo ze sobą”. Jeżeli w kompleksie znajdują się białka różniące się między sobą (bo były kodowane przez różne warianty genu csd), to taki kompleks jest aktywny, włączając molekularną ścieżkę powstawania samicy. Jeżeli zaś w kompleksie znajdują się identyczne białka csd (kodowane przez ten sam wariant genu csd), kompleks ten jest nieaktywny, co powoduje włączenie ścieżki prowadzącej do powstania samca.

Jaka różnica robi różnicę?

Wiedząc już, że to konfiguracja wariantów genu csd (dwa różne lub dwa takie same warianty, bądź tylko jedna kopia genu csd), u konkretnej pszczoły powoduje jej rozwój w kierunku danej płci, wypadałoby się zastanowić, co to właściwie znaczy „różne warianty”. Czy jakakolwiek różnica w sekwencji pomiędzy wariantami csd będzie funkcjonalna? Sprawa ta jest przedmiotem sporu, w który również jest zaangażowana pisząca te słowa. To, co wiadomo raczej na pewno, to fakt, że istotne są tylko różnice w sekwencji końcowej części białka, tak zwanej domenie PSD. Domena ta kodowana jest fragment DNA, który często podlega mutacjom, które doprowadzają zarówno do podmiany reszt aminokwasowych w kodowanym białku, jak i również do skracania lub wydłużania tego fragmentu. To, co jest przedmiotem kontrowersji, to określenie, ile zmian w pozycjach aminokwasowych kodowanych białek powoduje, że dana para białek csd będzie tworzyć aktywny kompleks. Analizując pary wariantów csd występujące u robotnic i wiedząc, że jeżeli dana para wariantów doprowadziła do powstania robotnicy, to musi być funkcjonalna, jedna z grup badawczych wyciągnęła wniosek, że minimalna liczba różnic to pięć reszt aminokwasowych w domenie PSD. Ci sami badacze odkryli również parę wariantów csd, różniących się od siebie trzema resztami aminokwasowymi, która była tylko częściowo funkcjonalna, to znaczy na ogół prowadziła do powstania samców, ale również od czasu do czasu – samic. Wniosek „różnicę robi co najmniej pięć aminokwasów” wydaje się jednak przedwczesny, ponieważ w czasie badań autorstwa naszej grupy, przeprowadzonych na dużo większej liczbie robotnic pochodzących z różnych rodzin, udało się „upolować” parę wariantów csd różniących się jedynie jedną resztą aminokwasową, a mimo wszystko w pełni funkcjonalną, to znaczy wydajnie prowadzącą do rozwoju samic. Wobec małej liczby danych (pojedynczych przypadków par wariantów nieznacznie od siebie się różniących) nie sposób powiedzieć, co będzie tu regułą, a co wyjątkiem. Zachowując ostrożność, w tej chwili można jedynie wnioskować, że to nie liczba różnic w pozycjach aminokwasowych jest ważna, a pozycja zmiany i otaczająca ją sekwencja.

Ile jest wariantów csd i dlaczego to takie ważne?

Na tym etapie ktoś mógłby już zacząć podejrzewać, że poznawanie dokładnego mechanizmu działania csd, nie mówiąc już o sporach dotyczących „minimalnej różnicy” są klasyczną tetrapiloktomią (sztuką dzielenia włosa na czworo, patrz „Wahadło Foucaulta U. Eco). Jakie to ma znaczenie? Odpowiedź brzmi – ogromne. O ile do tej pory prowadziłam Czytelnika w głąb – od pszczelej rodziny, przez poszczególnych jej członków i ich informację genetyczną, działanie csd i w końcu jego strukturę, tak teraz, mając już tę wiedzę, chciałabym zaproponować powrót do poziomu rodziny, a nawet całej populacji pszczół.

            Przede wszystkim należy zauważyć, że powstawanie diploidalnych trutni nie jest korzystne dla rodziny pszczelej. Można uznać, że są one genetycznym „wypadkiem przy pracy”, gdyż powstają z zapłodnionych komórek jajowych, a więc miały być samicami (najprawdopodobniej robotnicami). Nieszczęśliwy zbieg okoliczności sprawił, że w jednym organizmie znalazły się dwa identyczne warianty genu csd (pochodzące od matki i od trutnia) i nie został uruchomiony molekularny szlak odpowiedzialny za powstanie samicy. Powstający diploidalny truteń jest eliminowany przez swoją rodzinę (gdyby przeżył i tak nie byłoby z niego pożytku, bo nie mógłby się rozmnażać). A to jest strata – zasobów, czasu i miejsca, które mogłyby być przeznaczone na wyprodukowanie robotnicy. A pszczela rodzina jest między innymi silna liczebnością swoich robotnic. Wyobraźmy sobie skrajny przypadek, czyli co by było, gdyby matka była zaplemniona przez tylko jednego trutnia, do tego niosącego wariant csd identyczny z jednym z jej wariantów csd (Rycina 2). Otóż aż połowa jej diploidalnego potomstwa spisana by była na straty, gdyż posiadałaby w swoim genomie dwa identyczne warianty csd.

            Jak więc pszczoły minimalizują prawdopodobieństwo powstawania diploidalnych trutni? Na dwa główne sposoby: matka leci w lot godowy daleko od własnego gniazda, aby zminimalizować prawdopodobieństwo kopulacji z własnymi braćmi, oraz kopuluje z wieloma różnymi trutniami, zwiększając tym samym prawdopodobieństwo na zebranie plemników z różnymi wariantami csd. Wydaje się jednak, że kluczem do sukcesu jest utrzymanie w populacji odpowiednio dużej różnorodności wariantów csd. Im jest ich więcej, tym mniejsze prawdopodobieństwo, że w jednym organizmie spotkają się dwa takie same. Ile zatem jest tych wariantów? I tu znowu są spore kontrowersje – wiele lat temu uważało się, że kilkanaście (ku mojemu ubolewaniu w dalszym ciągu nawet najnowsze publikacje w ślepo podają taką informację). Później twierdzono, że na całym świecie jest ich około 140. My z kolei pokazaliśmy, że nie sposób tego oszacować, bo warianty csd są nierównomiernie rozłożone zarówno pod względem częstotliwości, jak i miejsca występowania – innymi słowy, pobierając pszczoły do badania z różnych miejsc, jest duża szansa, że znajdzie się zupełnie inny zestaw wariantów. Do tej pory zgłoszono już kilkaset różnych sekwencji csd do publicznych baz danych, co oznacza, że gen csd jest jednym z najbardziej różnorodnych z poznanych do tej pory genów.

            Co sprawia, że wariantów csd jest tak dużo? Jest to bardzo specyficzna sekwencja DNA kodująca domenę PSD, która jest bardzo podatna na mutacje. Składa się ona z licznych powtarzających się elementów, które sprawiają, że maszyna kopiująca DNA jest bardziej podatna na popełnianie błędów, szczególnie takich, które wydłużają bądź skracają nowopowstającą nić DNA. Jeśli na skutek mutacji powstanie nowy wariant csd, to znajduje się on w uprzywilejowanej pozycji w stosunku do już istniejących w populacji wariantów, gdyż niezależnie od tego, kto mu się „trafi do pary” w powstającym diploidalnym organizmie, to zawsze taka para będzie funkcjonalna, to znaczy powstanie samica. I tak nowy wariant będzie się propagował w populacji z dużym powodzeniem, aż do momentu, kiedy stanie się tak częsty, że prawdopodobieństwo, że trafi „na samego siebie” w nowopowstającym organizmie będzie na tyle istotne, że zacznie być częściowo eliminowany z populacji z powodu powstawania diploidalnych trutni. W tym momencie, mam nadzieję, zaczyna być zrozumiałe, dlaczego naukowcy tak bardzo się spierają o kwestię „wystarczającej różnicy” pomiędzy wariantami csd – gdyby były znane te kryteria, można by było oszacować, jak szybko mogą powstawać nowe warianty, które z już istniejącymi wariantami mogłyby tworzyć funkcjonalne pary i jaka byłaby ich dynamika rozprzestrzeniania się w populacji.

Wir diploidalnych trutni

Wyobraźmy sobie teraz czarny scenariusz – mamy na danym terenie populację pszczół, której liczebność została w jakiś sposób zaburzona przez czynniki zewnętrzne (pasożyty, insektycydy, niedostatek pożywienia, fatalną pogodę…). Wraz ze spadkiem liczby rodzin zmniejsza się różnorodność wariantów genu csd w takiej populacji. W ślad za tym spadkiem wzrasta prawdopodobieństwo, że nowe matki będą zaplemniane przez trutnie niosące takie same warianty csd, które mają matki, a więc zamiast robotnic będzie powstawać pewien odsetek diploidalnych trutni. To z kolei może osłabiać rodziny i powodować ich śmierć. Spadek liczby rodzin spowoduje coraz większy spadek różnorodności csd, i tak dalej, i tak dalej, aż cała populacja w końcu wyginie. Efekt ten został przewidziany symulacjami matematycznymi i został nazwany wirem diploidalnych trutni (Rycina 3). Mając to na względzie, można wnioskować, że obecne problemy ze zwiększającą się śmiertelnością pszczół, choć są niewątpliwie stymulowane wspomnianymi czynnikami zewnętrznymi,  mogą być dodatkowo napędzane mechanizmem powstawania diploidalnych trutni. Nie można nie odnosić się zatem sceptycznie do niektórych praktyk hodowlanych, które powodują dodatkowe obniżenie różnorodności genetycznej populacji pszczół, szczególnie masowej produkcji blisko spokrewnionych ze sobą matek pszczelich i ich kontrolowanej inseminacji spermą pochodzącą od ograniczonej liczby trutni, często blisko ze sobą spokrewnionych. Praktyki takie, choć pomagające w osiągnięciu celów hodowlanych, jakimi są wyprowadzenie linii pszczół o pożądanych cechach, powinny być jednak głęboko przemyślane pod kątem niekorzystnego wpływu, jaki mogą wywrzeć na całą populację pszczół.

Maminsynki i córeczki wielu tatusiów, czyli o intymnym życiu pszczół miodnych

Historia, którą chcę dzisiaj opowiedzieć, powinna mile połechtać próżność polskiego czytelnika, gdyż badania naukowe, które dotyczą tego, w jaki sposób pszczoły stają się tytułowymi maminsynkami albo córeczkami tatusiów, rozpoczyna się w połowie XIX wieku od wielce frapującego odkrycia polskiego naukowca – Jana Dzierżona (rycina 1). Dzierżon znany jest pszczelarzom głównie z tego powodu, że opracował budowę współczesnego ula z ruchomymi ramkami, co znacznie zwiększyło wygodę i wydajność hodowli pszczół i pozyskiwania miodu. Dla naszej opowieści kluczowe jest jednak inne jego odkrycie, a mianowicie, że pszczoły mogą się rozmnażać poprzez dzieworództwo.

Rodzina pszczela i obyczaje godowe pszczół

Zanim powtórnie zdecyduję się użyć tego terminu naukowego, winna jestem Czytelnikowi wyjaśnienie, jakie są obyczaje godowe pszczół i przy okazji zaznaczyć, że wszędzie tam, gdzie piszę o pszczołach bez dodatkowego doprecyzowania gatunku, mam na myśli pszczołę miodną (Apis mellifera L.). Zacznijmy zatem od tego, jak wygląda rodzina pszczela. Otóż składa się ona z wielu tysięcy (w szczycie rozwoju rodziny – kilkudziesięciu tysięcy) niepłodnych samic, których zadaniem jest robienie wszystkiego poza rozmnażaniem, czyli: zbieranie i przetwarzanie pokarmu, budowa i utrzymywanie czystości gniazda (znajdującego się w ulu, dziupli lub jakiejś innej wnęce), opieka nad potomstwem, obrona przed agresorami, utrzymywanie temperatury gniazda… Nic dziwnego, że pszczoły te nazywa się robotnicami – one dosłownie zaharowują się na śmierć: robotnice żyjące wiosną i latem żyją zaledwie około 30 dni, tym krócej, im bardziej intensywnie pracują (swoją drogą – powinno nam to dać trochę do myślenia, prawda?). Robotnice, które zimują, żyją znacznie dłużej (od jesieni do wiosny). Robotnice są samicami. Samicą jest również matka, której zadaniem jest wyłącznie rozmnażanie się. Otoczona troskliwą opieką, matka spędza całe dnie i noce na składaniu jaj, z których później wykluje się jej potomstwo. No i są jeszcze samce – trutnie – w rodzinie jest ich kilkaset i można powiedzieć, że ich jedynym życiowym celem jest próba zapłodnienia jakiejś matki (rycina 2).

Mając już z grubsza scharakteryzowanych członków rodziny, możemy puścić w ruch jej cykl życiowy. Zacznijmy od momentu, kiedy w przyrodzie wszystko idzie po myśli pszczół, czyli jest ciepło, nie pada i pokarmu jest pod dostatkiem – wtedy liczba pszczół w rodzinie gwałtownie przyrasta i przestają się mieścić w gnieździe. Wówczas zapada zbiorowa rodzinna decyzja, że należy wyhodować młode matki. Matki pod względem genetycznym niczym nie różnią się od robotnic, ale larwy przeznaczone do bycia matkami są karmione przez robotnice innym, specjalnym pokarmem. Taka dieta sprawia, że w komórkach rozwijającego się organizmu przyszłej matki uruchamiana jest ekspresja innych niż u robotnic genów (jest to tak zwana kontrola epigenetyczna), co sprawia, że powstaje znacząco inne, morfologicznie i fizjologicznie, ciało. Gdy młode matki są już prawie gotowe do wyklucia, matka rodziny opuszcza gniazdo z częścią robotnic i szuka sobie nowego domu, zostawiając stare gniazdo swojej następczyni. Pierwsze, co robi młoda matka po wykluciu, to eksterminacja wszystkich pozostałych (jeszcze niewyklutych) młodych matek. Dokonawszy tego siostrobójstwa i objąwszy niepodzielną władzę nad rodziną, młoda matka leci w lot godowy aby kopulować z trutniami. Po serii takich lotów matka wraca do gniazda i rozpoczyna składanie jaj, z których wylęgną się członkowie jej rodziny – robotnice i trutnie, a jeżeli warunki pozwolą, to w kolejnym roku – również młode matki.

Przeleciałam, nomen omen, dość szybko przez moment lotu godowego, ale tutaj musimy się zatrzymać, bo to jest chwila krytycznie ważna dla matki, jej rodziny, ba! – dla całej populacji pszczół. Tym, co wzbudza chyba największe emocje, jest fakt, że matka w czasie swoich lotów godowych kopuluje z wieloma trutniami – uważa się, że jest ich od 10 do 20, choć niektóre najnowsze badania genetyczne sugerują, że ich liczba może być znacznie większa (kilkadziesiąt). Ważne jest aby sobie uzmysłowić, że matka w celu kopulacji odlatuje daleko od swojego gniazda, podążając w miejsca (tak zwane trutowiska), w których gromadzą się trutnie z całej okolicy – w ten sposób unika kopulacji z trutniami z własnego gniazda (swoimi braćmi), znacząco zwiększając zróżnicowanie genetyczne swojego potomstwa i unikając chowu wsobnego (kazirodztwa). Ze wszystkich trutni obecnych na trutowisku szansę na kopulację z matką mają te najsprawniejsze – najszybsze i najbardziej wytrwałe. Można zatem powiedzieć, że lot godowy jest metodą selekcji trutni. Kopulacja odbywa się w locie,  trutnie dokonawszy dzieła spadają martwe na ziemię, zaś matka wraca do gniazda. Plemniki przekazane jej przez trutnie przechowywane są przez nią  w specjalnym narządzie zwanym spermateką, w której potrafią przetrwać nawet kilka lat (!) i z której pobierane są w celu zapłodnienia jaja. Albo i nie. I tu właśnie wkracza Jan Dzierżon i jego odkrycie…

Co odkrył Jan Dzierżon

Odkryciem Dzierżona było to, że matki, które nie mogły polecieć w lot godowy, ponieważ miały uszkodzone skrzydełka, również po jakimś czasie zaczynały składać jaja, z których jednak wylęgały się wyłącznie trutnie. Dzierżon doszedł do słusznego wniosku, że generalną zasadą u pszczół jest, iż z niezapłodnionych jaj rozwijają się samce (trutnie), a z zapłodnionych samice (robotnice lub kolejne matki).  Matka, która odbyła loty godowe może zarówno składać zapłodnione jaja (pobierając plemnik ze spermateki), jak i niezapłodnione (nie pobierając plemnika). Przez wiele lat uważano, że to nie może być prawda, ale w końcu, w roku śmierci Dzierżona (1906), na konferencji w Marburgu uznano słuszność jego wniosków. Oczywiście w chwili odkrycia dzieworództwa pszczół (1835 r.) i publikacji tej obserwacji (1845 r.) nikt nie miał pojęcia na temat DNA, chromosomów, dziedziczenia i podziałów komórkowych, więc mechanizm tego procesu pozostał na długi czas całkowicie nieznany. Zresztą i teraz nadużyciem byłoby stwierdzenie, że wiemy wystarczająco dużo, aby cały ten proces zrozumieć, tym niemniej chciałabym Czytelnikowi w tym i w kolejnych wpisach nieco przybliżyć zarówno sam mechanizm odpowiedzialny za powstawanie płci u pszczół, jak i konsekwencje tego bardzo ciekawego sposobu rozmnażania, które, jak się później okazało, nie ogranicza się wyłącznie do pszczół, ale jest charakterystyczne dla owadów błonkoskrzydłych, do których należą między innymi osy i mrówki.

Płeć genetyczna u ludzi

Jak zapewne Czytelnikowi wiadomo, każdy z nas, ludzi, posiada podwójny zestaw informacji genetycznej – poza komórkami rozrodczymi, każda jądrzasta komórka naszego organizmu ma 23 pary chromosomów (fragmentów DNA), a każdą parę tworzą chromosomy, które pod względem sekwencji zapisanych w niej informacji genetycznej są bardzo do siebie podobne (ale nie identyczne!) i które otrzymaliśmy (po jednym) od matki i od ojca. W czasie procesu tworzenia naszych własnych komórek rozrodczych (gamet – komórek jajowych albo plemników), do gamet „przechodzi” losowo po jednym chromosomie z każdej pary. Tak więc nasza gameta zawiera pojedynczy zestaw informacji genetycznej – 23 chromosomy, z czego część pochodzi oryginalnie od naszej matki, a część od naszego ojca. Nasze komórki rozrodcze przenoszą więc informację genetyczną naszych przodków – zarówno ze strony matki jak i ojca. Jeżeli chodzi o płeć biologiczną, to jest ona u nas determinowana konfiguracją 23-ej pary chromosomów: chromosomów X i Y. Jeżeli nowopowstający organizm ma dwa chromosomy X, to powstanie dziewczynka, a jeżeli X i Y – chłopiec (rycina 3) (od tej reguły są wyjątki związane z zaburzeniami struktury chromosomów płciowych, ale na razie zostańmy przy opisie tej najczęściej spotykanej sytuacji).

Determinacja płci u pszczół

U pszczół sytuacja jest znacząco inna, szczególnie jeśli chodzi o samców (rycina 4). Samice pszczół, ponieważ powstają z zapłodnionych jaj, posiadają podwójny zestaw informacji genetycznej (16 par chromosomów) – pochodzących od matki (16 sztuk) i od trutnia (również 16 sztuk). Trutnie natomiast, ponieważ powstają z niezapłodnionych komórek jajowych, posiadają pojedynczy zestaw informacji genetycznej, pochodzący wyłącznie od matki, a konkretnie – z jej gamety. Można zatem śmiało powiedzieć, że trutnie są maminsynkami, gdyż nie mają ojców. I nigdy nie będą mieć synów, bo jeżeli ich plemnik zapłodni komórkę jajową, to powstanie samica. Robotnice zaś mają zarówno matkę jak i ojca, ale ponieważ matka, jak wspominałam, kopulowała z wieloma trutniami, tak naprawdę robotnice w danej rodzinie są córeczkami wielu tatusiów, a bardziej naukowo mówiąc – reprezentują różne linie ojcowskie. Uważa się, że zróżnicowanie linii ojcowskich jest korzystne dla rodziny pszczelej, gdyż powoduje, że w rodzinie znajdują się robotnice o zróżnicowanych „zdolnościach” (cechach), które powodują, że rodzina jako całość jest lepiej przystosowana do zmiennych warunków środowiska, jest bardziej odporna na patogeny itd. (temat ten postaram się poruszyć w innych moich wpisach).

Trutnie – strażnicy jakości informacji genetycznej

I po co to wszystko? Jaka korzyść z takiego sposobu rozmnażania się? Odpowiedź najprawdopodobniej tkwi w tej „pojedynczości” informacji genetycznej trutni. Wyobraźmy sobie wpierw naszą (ludzką) informację genetyczną – mamy podwójny jej zestaw. Jeżeli jakiś konkretny gen leżący na którymś z chromosomów (załóżmy tym od ojca) przestanie pełnić swoją funkcję na skutek zmiany w sekwencji DNA (mutacji), to na ogół druga kopia tego genu, znajdująca się na drugim z chromosomów danej pary (w naszym przykładzie – tym od matki), jest wystarczająca do tego, aby pełnić funkcję w organizmie i nic złego się nie dzieje. Oznacza to jednak, że mutacja ta może być dziedziczona w następnych pokoleniach i od czasu do czasu, gdy spotka się w danym organizmie ze swoim odpowiednikiem (kiedy zarówno gen od matki i od ojca będzie zmutowany) może doprowadzić do poważnych komplikacji, ze śmiercią organizmu włącznie. Można powiedzieć więc, że taka mutacja „wozi się” przez pokolenia i się nieczęsto ujawnia, bo zmutowany chromosom ma swojego prawidłowego partnera, który go maskuje. Wziąwszy to pod uwagę, uważa się, że opisany powyżej sposób rozmnażania się pszczół, w czasie którego powstają osobniki z pojedynczym zestawem informacji genetycznej (trutnie) powoduje, że taki typ mutacji, o ile wystąpi, zostanie natychmiast wyeliminowany, ponieważ trutnie nie mają drugiej kopii genu, która maskowałyby tę zmutowaną. Można zatem powiedzieć, że trutnie są swojego rodzaju testerami jakości informacji genetycznej – jeżeli odziedziczą coś zepsutego od swojej matki, albo coś się u nich zepsuje – zabierają ten błąd do grobu, nie pozwalając na jego przenoszenie na kolejne pokolenia. A ponieważ trutnie całe swoje życie – od komórki jajowej, przez larwę, poczwarkę aż do postaci dorosłej muszą żyć właśnie z tym pojedynczym zestawem informacji genetycznej, możliwości testowania jakości ich informacji genetycznej jest naprawdę dużo i mają szansę być wyłapane mutacje, które upośledzają funkcje organizmu na różnym etapie jego rozwoju i w różnych warunkach.

Trutnie mają złą sławę i przysłowiowo uważane są za nierobów, wręcz pasożytujących na swoich pracowitych siostrach. Pomyślmy jednak o nich z sympatią – nie dość, że są bezpardonowo przed zimą wyrzucane z gniazda i skazywane na śmierć głodową, to jeszcze wygląda na to, że są strażnikami jakości informacji genetycznej, której niedoskonałości przypłacają swoim życiem.

I na tym można byłoby całą opowieść zakończyć, gdyby nie fakt, że kolejne odkrycia ujawniły, że, co prawda rzadko, ale powstają także trutnie, które mają podwójny zestaw informacji genetycznej. A więc w miarę proste wytłumaczenie, że z niezapłodnionego jaja powstaje samiec, a zapłodnionego – samica, choć na ogół prawdziwe, w pewnych wyjątkowych przypadkach nie wyczerpuje istoty problemu. Bo mechanizm determinacji płci u pszczół leży znacznie głębiej… O tym w kolejnej części.