Życie w Kosmosie, czyli z pamiętnika malkontenta

Licencja: FOTOKITA/Shutterstock

Większość artykułów popularnonaukowych nie opiera się pokusie naciągania faktów i hipotez, mniej lub bardziej propagując tezę o obowiązkowym wyposażeniu Wszechświata w inteligentne życie, w dodatku na modłę ziemską, czyli białkowe.

Zacznijmy od definicji. Nie ma jednej definicji życia. Jest ich wiele, różnych, zależnych od punktu widzenia.

Tibor Gánti, węgierski biolog, wyodrębnił osiem cech życia, pięć koniecznych i trzy potencjalne.
Cechy konieczne obiektu żywego:
– jest wyodrębniony ze świata zewnętrznego
– posiada metabolizm
– jest wewnętrznie stabilny
– posiada podsystem przechowywania i przetwarzania informacji
– procesy wewnątrz systemu żywego są regulowane
Cechy potencjalne:
– musi mieć zdolność do wzrostu i rozmnażania
– w replikacji musi zachodzić zmienność (ewolucja)
– musi być śmiertelny

Widać, że pisał to biolog, jego definicja dotyczy życia biologicznego. Możemy jednak definiować życie z innych punktów widzenia. Na przykład fizyk powiedziałby, że życie może zmniejszać entropię, przez co organizmy żywe stają się coraz bardziej skomplikowane. Inaczej mówiąc organizmy żywe zmniejszają swoją entropię, pobierając energię z otoczenia. Cybernetyk określiłby życie jako system sprzężeń zwrotnych ujemnych podporządkowanych nadrzędnemu sprzężeniu zwrotnemu dodatniemu (tę akurat definicję zawdzięczamy Polakowi, Bernardowi Korzeniowskiemu). Z punktu widzenia termodynamiki życie to samoorganizujący system nierównowagowy, którego procesami rządzi program, przechowywany w postaci symbolicznej (informacja genetyczna), zdolny do reprodukcji, włącznie z tym programem (Lee Smolin). Z punktu widzenia teorii informacji życie to kontinuum samopodtrzymującej się informacji.

Wszystkie te definicje są prawdziwe, ale nie wyczerpują tematu. Więcej, tworzą mgłę pojęciową. Dlaczego? Czy wirus jest żywy? Czy wirus komputerowy jest żywy? Albo starożytna gra komputerowa Life? Cząstkowe, izolowane punkty widzenia tworzą doskonałe środowisko do sporów i niekończących się akademickich debat, rozmów o wszystkim i niczym. Dlatego najbardziej podoba mi się prosta i krótka definicja mówiąca, że życie jest materią, która może się rozmnażać i ewoluować w celu przetrwania. Definicja ta dobrze nadaje się do naszych rozważań o życiu pozaziemskim, nie nacechowanych antropocentryzmem, DNA-centryzmem i innymi naleciałościami kulturowymi zniekształcającymi myślenie.

Wiemy już, że nie znamy ścisłej definicji życia. Może w takim razie wiemy, jak ono powstało na Ziemi? Nie wiemy i nawet nie mamy pomysłu, jak się tego dowiedzieć. Wiemy jak działa życie w stanie rozwiniętym, ewolucja, ale nie wiemy, jak powstało pra-życie i jak się rozwijało, niepostrzeżenie przeobrażając się w życie. Jak więc, do jasnej, możemy cokolwiek powiedzieć o życiu pozaziemskim, które spełnia warunek stawiany przez definicję teorii informacji, tę o kontinuum samopodtrzymującej się informacji? Przecież organizacja materii (i energii) spełniająca podstawowe warunki definicji życia nie musi być organizmem. Może być oceanem, jak u Stanisława Lema w powieści „Solaris”, może być zorganizowanym rojem mikroautomatów, jak w „Niezwyciężonym”, w którym życie jest pochodną ich ilości i wymiany informacji między nimi. Nie znamy struktury gwiazd, skąd możemy wiedzieć, że we wnętrzu gwiazd nie kwitnie życie gwiazdowe? Inteligentne życie gwiazdowe. Niezawodny Lem napisał opowiadanie “Prawda”, które traktuje o samoorganizującej się plazmie. I nie jest to czcza fantazja, gdyż badania spolaryzowanej plazmy dowodzą, że wyobraźnia Stanisława Lema mogła być prorocza. Więcej można poczytać tu.

No dobrze, zawęźmy dziedzinę poszukiwań, poszukajmy życia białkowego. Zawężamy jeszcze bardziej – poszukujemy aminokwasów, podstawowych cegiełek budulcowych naszego, ziemskiego życia. Sonda Stardust przelatując przed jądro komety 81P/Wild-2 zebrała próbki, które przesłała na Ziemię. Po kilku latach okazało się, że próbka zawiera najprostszy aminokwas – glicynę o wzorze C2H5NO2 . Mamy więc nadzieję, że z tych najprostszych cząsteczek organicznych, w odpowiednich warunkach, powstaną bardziej skomplikowane związki, które, jeśli będą miały dużo czasu i bardzo dużo szczęścia, utworzą pra-DNA i nabędą zdolności do samoreplikacji i ewolucji. Dalej, mamy nadzieję, sprawy potoczą się gładko i po kilku miliardach lat po planecie-szczęściarzu będą chodziły małe zielone ludziki.

Jeśli wyczuwasz ironię w tym, co wyżej napisałem, to masz rację. Nie wiemy, czego szukamy, więc szukamy rzeczy najprostszych – cząsteczek organicznych. Ponieważ jesteśmy ludźmi, do wszystkiego przykładamy ludzką miarę. Najlepszym przykładem jest program SETI, poszukiwanie kosmicznej inteligencji poprzez nasłuchiwanie i analizę sygnałów radiowych docierających do naszych anten z Kosmosu. Celem programu, zainicjowanego w 1999 roku było nawiązanie kontaktu z cywilizacjami pozaziemskimi. Po 21 latach bezowocnych prób wyłuskania „inteligentnej” transmisji radiowej z kosmicznego szumu, program został przerwany. Oficjalnie dlatego, że zebrano wystarczająco dużo materiału do analiz. Nieoficjalnie dlatego, że nawet najwięksi optymiści stracili nadzieję (i zapał) na jakikolwiek kontakt z kimkolwiek. Dwadzieścia lat to wystarczająco długi czas, żeby zrozumieć, że program nie miał szans powodzenia. Więcej, zdaliśmy sobie sprawę z tego, że obca inteligencja nie musi być pokojowo do nas nastawiona. W końcu dla Nich to My jesteśmy „obcy”.

Ryc. 1. Koncepcja artystyczna przedstawiająca egzoplanetę Kepler-1649c krążącą wokół swojej macierzystej gwiazdy – czerwonego karła. Egzoplaneta znajduje się w ekosferze swojej gwiazdy – w odległości, w której na powierzchni planety może znajdować się woda w stanie ciekłym. Źródło: NASA/Ames Research Center/Daniel Rutter https://www.astronomy.com/science/the-lonely-universe-is-life-on-earth-just-a-lucky-fluke/

Inteligencja

Podobnie jak życie, również inteligencja wymyka się jednoznacznej definicji. Potocznie inteligencję utożsamiamy z rozumem, ale to utożsamienie nie przybliża nas do zrozumienia, czym ona właściwie jest. Najprostsza definicja inteligencji to (Wikipedia): zdolność do postrzegania, analizy i adaptacji do zmian otoczenia. 

Wyjaśnienia wymaga też różnica między poszukiwaniem życia a poszukiwaniem inteligencji. To są różne rzeczy i nie należy ich mylić. Zaczynamy to rozumieć teraz, kiedy właśnie wybucha bomba ze sztuczną inteligencją (AI) i okazuje się, że nie bardzo wiemy, co z nią zrobić. A przecież wszystkie karty mamy w ręku, jesteśmy na początku jej rozwoju. Popełniamy jednak błąd za błędem; boimy się, ale brniemy. I żebyśmy się dobrze rozumieli, nie mam nic przeciwko AI, niech się rozwija, ale niech pozostanie tylko narzędziem, jak kontrolowana reakcja jądrowa. „Zwykła”, tradycyjna sztuczna inteligencja nam nie zagraża, ponieważ jest odtwórcza. Kompiluje treści, którymi się „żywi” i przedstawia je w zmienionej formie, na przykład w postaci prawidłowo zredagowanego tekstu. Posługuje się znanymi nam regułami, a efekty jej pracy są przewidywalne. Co innego generatywna sztuczna inteligencja (AGI), zdolna do tworzenia wiedzy, kreatywna. Obecnie prowadzone prace mają na celu stworzenie AGI, na przykład poprzez emulowanie sieci połączeń nerwowych mózgu. Cechą charakterystyczną AGI jest zdolność do tworzenia danych, na których AGI może się uczyć. Przypomnijmy, że „zwykła” AI uczy się na danych wcześniej wytworzonych przez człowieka.

Paradoksalnie, chyba wcześniej „odkryjemy” naszą własną, rodzimą sztuczną inteligencję w postaci Golema AGI, niż znajdziemy ją w Kosmosie.

Z powyższych wywodów wynika, że nie szukamy życia jako takiego, kompletnego, skończonego. Nie wiemy, jak szukać, nasza technologia dopiero co pozwoliła nam oderwać się od Ziemi. Szukamy więc życia in statu nascendi – przejawów, śladów, sygnałów, elementów, przesłanek, z których wcale nie musi cokolwiek wynikać. Robimy to dlatego, że, od kiedy zdaliśmy sobie sprawę z ogromu Kosmosu, nagle poczuliśmy się w tej piaskownicy strasznie samotni. 

Nie wiemy, jakie korzyści odnieślibyśmy, znajdując życie pozaziemskie w postaci chociażby najmniejszej bakterii, na Marsie czy innym Enceladusie. Poza zaspokojeniem ciekawości jedyną wymierną korzyścią z poszukiwań jest niewątpliwy rozwój naukowy i technologiczny, towarzyszący poszukiwaniom. Tak więc prawdziwym sensem tych poszukiwań jest przysłowiowe „gonienie króliczka” i napędzanie własnej motywacji do poszukiwań. Perpetuum mobile.

Trochę optymizmu, panowie…

Załóżmy jednak, że poszukiwania mają sens. Załóżmy, że ostatni krzyk mody, czyli egzoplanety, to realna perspektywa ich eksploracji, a może nawet eksploatacji. Pal sześć SETI, teraz egzoplanety.

W 2009 roku wystrzelono w Kosmos kosmiczny teleskop Kepler, specjalnie zaprojektowany do lokalizacji planet pozasłonecznych. Misja okazała się strzałem w dziesiątkę, do dziś odkryliśmy ponad 4000 planet, badając zaledwie 150 tysięcy układów gwiezdnych na jednym zaledwie kawałeczku nieba. Z odkrytych 4000 planet 25% jest wielkości zbliżonej do wielkości Ziemi, leżących w ekosferze swoich gwiazd. Nie są zbyt gorące ani zbyt zimne i teoretycznie posiadają warunki do syntezy bardziej złożonych związków organicznych, mogących być materiałem budulcowym Życia. Także teleskop TESS (Transiting Exoplanet Survey Satellite) będący własnością MIT tropi egzoplanety. Metoda jest podobna jak w Keplerze – detekcja osłabienia jasności gwiazdy w trakcie przechodzenia przed nią planety. W odróżnieniu od Keplera TESS skanuje całe niebo. 

Ryc. 2. Grafika obrazująca proporcje liczby planet potencjalnie nadających się do zamieszkania. Teleskop TESS. Źródła: Planetary Hability Laboratory; Abel Mendez, University od Puerto Rico at Arecibo; Tom Barclay, NASA

Droga Mleczna składa się z ponad 100 miliardów gwiazd, więc z prostego rachunku wynika, że w samej Galaktyce jest 25 miliardów miejsc, gdzie życie mogłoby się rozwinąć. Mogłoby, tylko dlaczego się nie rozwinęło? O tym w następnym rozdziale, na razie bądźmy optymistami. W oddzielnym wpisie przedstawię hipotezę jedynej (rzadkiej) Ziemi (ang. Rare Earth hypothesis) – według której Ziemia i jej otoczenie mają nieprawdopodobnie szczęśliwie dobraną kombinację parametrów astrofizycznych i geologicznych sprzyjającą powstaniu złożonego wielokomórkowego życia. Nie będę ukrywał, że ta hipoteza jest całkowicie zgodna z moim poglądem na sprawę.

Odkrycia dokonane za pomocą Keplera tchnęły mnóstwo optymizmu w więdnącą nieco dziedzinę poszukiwań ET. Znalazły się pieniądze na nowe programy badawcze, odżyła nauka zwana astrobiologią. Powstały naziemne teleskopy służące do poszukiwania śladów życia na egzoplanetach. Zainteresowanych badaniami w tej dziedzinie odsyłam do obszernego artykułu w National Geographic https://www.nationalgeographic.com/magazine/article/extraterrestrial-life-probably-exists-how-do-we-search-for-aliens.

Słów kilka o astrobiologii 

Astrobiologia to multidyscyplinarna dziedzina naukowa badająca pochodzenie, ewolucję, rozmieszczenie i potencjalne istnienie życia we wszechświecie. Właściwie trudno nazwać astrobiologię nauką, raczej filozofią próbującą odpowiedzieć na pytanie „Kim jesteśmy? Skąd przybywamy? Dokąd zmierzamy?”. Impulsem do powstania nowoczesnej astrobiologii był meteoryt marsjański ALH84001 odkryty na Antarktydzie w 1984 roku. To nic, że w meteorycie nie odkryto żadnych śladów życia, ale odkrycie pierwszych egzoplanet i postępy w mikrobiologii (szczególnie odkrycie ekstremofili) wzbudziły wielki zapał do badań w tej dziedzinie.

W życie pozaziemskie wierzono już od XIX wieku. Panowało wtedy przekonanie o życiu na Marsie i Wenus. W 1877 roku Giovanni Schiaparelii odkrył “kanały” na Marsie. Z kolei Wenus, zbliżona rozmiarami do Ziemi, tajemnicza, bo zakryta po szyję chmurami, musiała być zamieszkana, no bo jakże by inaczej. Księżyc też był murowanym kandydatem na siedlisko żywych istot. W utrwalaniu tego przekonania duży udział miała literatura fantastyczno-naukowa. Co prawda pierwsze amerykańskie i radzieckie misje kosmiczne rozwiały zapał do zasiedlenia gotowych do tego planet naszego układu, ale astrobiologia zaczęła krzepnąć jako kandydatka na nową dziedzinę nauki. Joshua Lederberg, noblista, biolog molekularny i astrobiolog w 1960 roku pisał: Astrobiologia nie jest w żadnym stopniu dziedziną bardziej fantastyczną niż plany realizacji podróży kosmicznych, a naukowcy mają obowiązek zgłębiać ten temat wraz ze wszystkimi jego konsekwencjami dla nauki i z myślą o ludzkim dobrobycie.

Carl Sagan, wielki popularyzator nauki, astronom i astrobiolog, walnie przyczynił się do jej popularności. Sagan wierzył, że na Marsie mogą znajdować się prymitywne formy życia. Niestety okazało się to nieprawdą.

Jeszcze o panspermii

Pomostem między poszukiwaniem życia w Kosmosie i powstaniem życia na Ziemi jest panspermia. Według tej teorii życie oparte o DNA jest na tyle unikalnym zjawiskiem, że nie może powstawać ot tak po prostu, z prawdopodobieństwem statystycznym, po spełnieniu warunków fizycznych. Życie powstało jeden jedyny raz, gdzieś w głębi Kosmosu i następnie, korzystając z kosmicznych środków lokomocji (np. komety, meteoryty) rozpropagowało się w postaci bakterii lub przetrwalników na inne układy gwiezdne. Tam zaś, korzystając z wbudowanego już mechanizmu ewolucji mogło się dalej rozwijać. Teoria jest ciekawa, bo implikuje rozwój bardzo zróżnicowanych ekosystemów w zależności od panujących na danej planecie warunków. Prekursorem panspermii jest grecki filozof Anaksagoras. Podobne hipotezy wysuwali XIX i XX-wieczni uczeni: J.J. Berzelius w 1834 r., W. Thomson (późniejszy lord Kelvin) w 1871 r. i Svante Arrhenius w 1908 r. Arrhenius głosił, że mikroorganizmy mogły być przenoszone wskutek ciśnienia światła – tzw. radiopanspermia. O ciśnieniu światła pisał onegdaj Lucas Bergowsky.

Jako bonus, tu jest link do artykułu w NewScientist o niesporczakach i ich niebywałej odporności na ekstremalne warunki zewnętrzne jak promieniowanie, próżnia, temperatura: https://www.newscientist.com/article/2412569-we-finally-know-how-tardigrades-can-survive-extreme-conditions/

Ryc. 3. Niesporczak pod mikroskopem. Niesporczaki to mikroskopijne stworzenia żyjące na Ziemi w różnorodnych środowiskach, potrafiące przetrwać w warunkach próżni kosmicznej. Zdjęcie: Philippe Garcelon

Cegiełki życia

Poszukiwanie życia we Wszechświecie odbywa się zarówno w skali makro (egzoplanety) jak i mikro (cząsteczki). Zaawansowane badania spektroskopowe pozwoliły odkryć w obiektach pozaziemskich (chmury molekularne, protogwiazdy, komety, powierzchnia innych planet) cząsteczki organiczne: glikol aldehyd, cyjanoacetylen, acetonitryl, aminy oraz związki aromatyczne, w tym benzen. Rozpoczęto też bezpośrednie badania materii międzygwiezdnej, odkrywając (wspomnianą wcześniej) glicynę w komecie. 

Coś w rodzaju podsumowania

Badania Kosmosu są bardzo kosztowną zabawką i nie byłyby tak szczodrze finansowane przez państwa gdyby nie legenda życia pozaziemskiego. Na przykład Słońce, Wenus albo Księżyc, globy ewidentnie jałowe i martwe, przyciągają niewielkie fundusze. Na przeciwnym biegunie zainteresowania leży Mars, księżyce Jowisza i Saturna oraz pas planetoid. Poszukiwania przejawów życia idą tam pełną parą. Lepiej więc wydać pieniądze na poszukiwania Świętego Graala, przy okazji dokonując odkryć fizycznych, chemicznych czy technologicznych np. w energetyce i medycynie, niż marnować siły i środki na wyścig zbrojeń i prowadzenie bezsensownych wojen. Niech żyją „zielone ludziki”.

Przez Wszechświat na złamanie karku, czyli Oh-My-God i Amaterasu

Trzy dni temu świat obiegła wiadomość, że 27 maja 2021 r. detektor ulokowany w stanie Utah w USA, pracujący w ramach międzynarodowego projektu Telescope Array, wykrył cząstkę promieniowania kosmicznego o energii szacowanej na ok. 240 EeV. Było to najbardziej imponujące odkrycie tego typu od 1991 r., kiedy zaobserwowano cząstkę nazwaną Oh-My-God o energii jeszcze większej: 320 EeV. Po dwóch latach analizowania danych obserwację opublikowano 23 listopada 2023 r. w czasopiśmie Science. Cząstkę, która z takim impetem dała o sobie znać, nazwano imieniem  japońskiej bogini słońca Amaterasu, co można przetłumaczyć jako „świecąca na niebie”. Opisał ją bowiem zespół kierowany przez japońskiego astronoma Toshihiro Fujii z Uniwersytetu w Osace.

Co to właściwie jest EeV, czyli eksaelektronowolt?  Przedrostek eksa- dodany do nazwy jednostki oznacza pomnożenie wartości tej jednostki przez 1018, czyli przez trylion. A zatem jeden eksaelektronowolt to trylion elektronowoltów. Ale co to jest elektronowolt? Jednostką tą chętnie posługuje się fizyka cząstek, bo wszelkie swobodne cząstki naładowane elektrycznie mają ładunek stanowiący całkowitą (dodatnią lub ujemną) wielokrotność ładunku elementarnego e. Jest on równy ładunkowi protonu (+1 e), a także ładunkowi elektronu, tyle że ze znakiem przeciwnym (−1 e). Jeden elektronowolt to energia, jaką uzyskuje elektron lub proton przyśpieszany w próżni pod wpływem różnicy potencjału elektrycznego 1 V. W przeliczeniu na układ SI energia ta wydaje się znikoma: 1 eV = 1,6 × 10−19 J, czyli sześć razy mniej niż jedna trylionowa dżula. Ale pamiętajmy, że mówimy o cząstkach subatomowych, a w ich świecie coś, co wydaje nam się niemal nieskończenie małe, może się jednak liczyć.

Ryc. 1.

Żeby laikom trudniej było zrozumieć, o czym mówią fizycy, elektronowolt i jego pochodne (megaelektronowolt, gigaelektronowolt itd.) służą także do określania masy cząstek. Dlaczego, skoro są jednostkami energii? Dlatego, że masa i energia są z sobą związane wzorem Einsteina: E = mc2. Cząstka nawet w spoczynku (czyli nieporuszająca się względem obserwatora) posiada „uwięzioną” energię własną, utożsamianą z jej masą pomnożoną przez prędkość światła do kwadratu. A ponieważ fizycy lubią myśleć o stałej c jako o naturalnej jednostce (na dodatek wygodnej, bo światło ma tę samą prędkość w dowolnym układzie odniesienia), to podzieliwszy 1 eV przez c2, otrzymują jednostkę masy równoważną energii 1 elektronowolta. Masa ta w układzie SI ma wartość 1,783 × 10−36 kg, czyli bardzo mało (prawie miliard razy mniej niż masa protonu). Nieformalny skrót myślowy (potraktowanie wartości c jako jedności) pozwala także tę jednostkę masy nazywać elektronowoltem.

Na mocy tego uproszczenia mówi się na przykład, że masa elektronu wynosi ok. 0,511 MeV (czyli 511000 eV). Jeśli zależy nam na ścisłości, to powiemy, że masa ta wynosi naprawdę 0,511 MeV/c2 = 9,11 × 10−31 kg. Masa protonu to z kolei równoważnik ok. 938 MeV, czyli 1,67 × 10−27 kg.

Czym była cząstka Amaterasu? Nie wiadomo dokładnie, ale tzw. pierwotne promieniowanie kosmiczne, zanim zderzy się z atmosferą Ziemi i wygeneruje kaskady cząstek promieniowania wtórnego wykrywanych przez naziemne detektory, składa się w 90% z protonów. Oprócz nich 9% stanowią jądra helu 4He, czyli cząstki alfa (złożone z 2 protonów i 2 neutronów, niosące ładunek 2 e), a reszta (1%) to swobodne elektrony i jądra pierwiastków cięższych niż hel. Jest zatem dość prawdopodobne, że Amaterasu to po prostu proton rozpędzony tak szaleńczo, że jego energia kinetyczna (w układzie odniesienia związanym z Ziemią) wyniosła 240 trylionów elektronowoltów (256 miliardów razy więcej niż energia „spoczynkowa” równoważna jego masie).

Czy można tę energię jakoś unaocznić? Oczywiście. Ponieważ 1 eV to 1,6 × 10−19 J, łatwo przeliczyć energię Amaterasu na dżule. Wychodzi mniej więcej 38 J (a dla cząstki Oh-My-God aż 51 J). Jest to energia całkiem poważna. Piłka tenisowa ma masę ok. 56 g. Żeby jej nadać energię kinetyczną taką, jaką miała cząstka Amaterasu, trzeba ją rozpędzić do prędkości 37 m/s, czyli 133 km/h. Prędkość tego rzędu ma piłka zaserwowana z dużą siłą przez tenisistę. Pamiętajmy przy tym, że Amaterasu nie była piłką tenisową, ale protonem lub w najlepszym razie niezbyt wielkim jądrem atomowym (do żelaza włącznie). Za jej energię kinetyczną odpowiada nie masa, ale ogromna prędkość.

Jak nas uczy fizyka relatywistyczna, wzór na energię kinetyczną ciała o masie m poruszającego się z prędkością v, Ek = mv2/2, daje wynik zgodny z obserwacjami dla piłek tenisowych i innych obiektów poruszających się znacznie wolniej niż światło. Dla wielkich prędkości trzeba go zastąpić wzorem dokładniejszym, wynikającym z teorii względności. Całkowita energia ciała poruszającego się względem obserwatora z prędkością v wynosi E = mc2/√(1 – v2/c2) i rośnie nieograniczenie w miarę, jak v zbliża się do c. Od tej wartości powinniśmy odjąć energię spoczynkową (równoważnik masy) równą mc2, żeby otrzymać samą energię kinetyczną, czyli związaną z ruchem ciała. Ostatecznie mamy zatem wzór relatywistyczny na energię kinetyczną: Ek = (1/√(1 – v2/c2) − 1) mc2 (dla małych prędkości zbieżny ze wzorem klasycznym). Jednak dla prędkości naprawdę bliskich c składnik kinetyczny dominuje tak bardzo, że składnik spoczynkowy można z czystym sumieniem pominąć i przyjąć, że EkE.

W innym wpisie pokazywałem, że Wielki Zderzacz Hadronów (LHC) rozpędza protony do prędkości 0,99999999 c (względem ścian kolistego tunelu), czyli zaledwie 3,1 m/s poniżej prędkości światła. Wymaga to nadania każdemu protonowi energii 6,5 TeV, czyli 6,5 biliona elektronowoltów. To na razie szczyt możliwości ludzkich w tej dziedzinie. Energia Amaterasu była 37 milionów razy większa. Jaką prędkość musi mieć pojedynczy proton, żeby uzyskać energię kinetyczną piłki tenisowej zaserwowanej z dużym rozmachem? Z prostych obliczeń wychodzi 0,99999999999999999999999236 c. Jest to prawie prędkość światła, ale tylko prawie, bo z prędkością ściśle równą c mogą – a właściwie muszą się poruszać jedynie cząstki bezmasowe, niezdolne do pozostawania w spoczynku (takie jak foton). Różnica wynosi nieco ponad dwa femtometry (bilionowe części milimetra) na sekundę albo, jeśli kto woli, ok. 0,00007 mm na rok. Foton ścigający się z takim protonem wyprzedziłby go o 7 cm po milionie lat. Gdyby Amaterasu nie była protonem, ale np. jądrem żelaza o masie 56 razy większej, to różnica między jej prędkością a prędkością światła byłaby nieco większa, ale i tak znikoma.

Istnieje pewne teoretyczne ograniczenie na energię cząstki, która dociera na Ziemię z bardzo dalekich obszarów kosmosu (oddalonych o setki milionów lub miliardy lat świetlnych). Wynosi ono ok. 50 EeV. Cząstka o większej energii wytraciłaby w końcu jej część wskutek oddziaływania z fotonami mikrofalowego promieniowania tła. Wysnuwa się stąd wniosek, że cząstki kilkakrotnie przekraczające ten limit, takie jak Oh-My-God lub Amaterasu, musiały powstać stosunkowo blisko, np. kilkadziesiąt  milionów lat świetlnych od Ziemi. A ponieważ poruszają się one po torach niemal prostych, to można się pokusić o namierzenie na niebie ich źródła. Pomogłoby to wyjaśnić, jaki proces fizyczny wyprodukował takie kosmiczne monstra. Supernowa to za mało; bardziej prawdopodobnymi kandydatami byłyby dżety gorącej plazmy wyrzucane przez supermasywne czarne dziury w aktywnych jądrach galaktyk, a może kosmiczne kataklizmy w rodzaju rozerwania ciężkiej gwiazdy w kolizji z czarną dziurą.

Ryc. 2.

Obliczenia wskazały kierunek, z którego przybyła Amaterasu, ale ku zaskoczeniu zespołu odkrywców okazało się, że leży on w obrębie Pustki Lokalnej, „kosmicznej pustyni″ zaczynającej się nieopodal Grupy Lokalnej, do której należy Droga Mleczna. Jak okiem sięgnąć, nie widać tam nic szczególnego. Nie ma tam wielu galaktyk w odległościach mniejszych niż setki milionów lat świetlnych. Nawet zakładając, że pola magnetyczne w przestrzeni międzygalaktycznej mogą minimalnie zakrzywiać tory naładowanych cząstek ultraenergetycznych, i biorąc pod uwagę stosowne poprawki, nie znaleziono obiecujących kandydatów na potencjalne źródło Amaterasu. Podejrzenie, że cząstki tego typu powstają w jakichś egzotycznych procesach wymagających zrewidowania podstaw fizyki, jest ekscytujące, ale zapewne przedwczesne.

Cząstki o energii powyżej 100 EeV są skrajnie rzadkie. Szacuje się, że w każdy kilometr kwadratowy Ziemi jedna taka cząstka uderza rzadziej niż raz na sto lat. Od czasu do czasu udaje się je wykryć dzięki temu, że obserwatoria pokrywają spory obszar – ponad 700 km2 w przypadku Telescope Array. Częstsze są cząstki nieco mniej rozpędzone, ale i tak przekraczające wspomniany powyżej limit 50 EeV; zaobserwowano ich dotąd kilkadziesiąt. Rozbudowa sieci detektorów być może zwielokrotni liczbę obserwacji na tyle, że rzucą one jakieś światło na pochodzenie tych ekstremalnych składników promieniowania kosmicznego.

Opisy ilustracji

Ryc. 1: Jeden z detektorów systemu Telescope Array w stanie Utah. Źródło: Abu-Zayyad et. al. 2012 (licencja CC BY-NC-ND 3.0).
Ryc. 2: Ograniczenie Greisena–Zacepina–Kuźmina (GZK), sformułowane w 1966 r.: cząstki promieniowania kosmicznego pochodzące z bardzo dalekich źródeł nie powinny przekraczać energii 50 EeV, czyli około 8 dżuli.

Lektura dodatkowa

Omówienie artykułu z Science na łamach Nature: https://www.nature.com/articles/d41586-023-03677-0
Zagadka cząstek typu Amaterasu: https://arstechnica.com/science/2023/11/meet-amaterasu-astronomers-detect-highest-energy-cosmic-ray-since-1991/

Niezwykłe odkrycie w rozbłysku gamma

25 października 2023 roku NASA ogłosiła, że odkryto tellur. No dobrze, nie tyle odkryto (bo odkryty został na Ziemi już w XVIII w.), co zidentyfikowano podczas badań kosmicznych. I to odkrycie ma naprawdę duże znaczenie.

Skąd się wzięły pierwiastki chemiczne

Ale zacznijmy od tego, dlaczego ta informacja jest bardzo istotna. Musimy się cofnąć o niemal 14 mld lat, do czasu, w którym dopiero zaczęły powstawać pierwiastki chemiczne. Na samym początku powstało jądro wodoru, najprostszego z pierwiastków, składające się z jednej cząstki, protonu. Kolejnym był hel (2 protony + 2 neutrony). W kolejnym etapie tzw. pierwotnej nukleosyntezy (tworzenia jąder atomowych) powstawały następne jądra – deuteru i litu. Następnie mamy reakcje „spalania” wodoru – oczywiście nie jest to spalanie takie, jakie znamy z reakcji wodoru z tlenem (tlenu przecież jeszcze nie ma!). Powstają wtedy jądra takich pierwiastków, jak węgiel, azot, tlen itd. – aż do żelaza (Fe). I tu kończy się to, co produkują zwykłe gwiazdy. Nie są w stanie wyprodukować żadnego cięższego atomu. No dobrze, ale przecież wiemy, że na Ziemi (i w kosmosie) mamy sporo pierwiastków cięższych niż żelazo. Skąd one się wzięły?

W skrócie: gwiazda, która się wypaliła zaczyna zapadać się grawitacyjnie pod własnym ciężarem. W jej centrum jest sporo żelaza, dalej są lżejsze pierwiastki, takie jak krzem (Si), tlen (O), neon (Ne), aż do wodoru. Ciśnienie wewnątrz rośnie do niewyobrażalnych wartości i w końcu ten kosmiczny tygiel eksploduje. Jest to niesamowite zjawisko, które znamy jako supernową. Obserwujemy gwałtowny wzrost jasności gwiazdy, po czym ona szybko gaśnie – przestaje być widoczna, ale pozostaje po niej efektowna mgławica. Ciśnienie przed eksplozją powoduje wydzielenie się neutronów, które łączą się z jądrami żelaza, dając początek cięższym pierwiastkom. Nazywamy go „procesem r” (rapid – szybki), ponieważ biorą w nim udział szybkie neutrony. Po ich pochłonięciu następuje szereg emisji elektronów, co przesuwa powstające jądro w prawo w układzie okresowym. Kilka zdań o tym procesie napisał Lucas

No i to w zasadzie wszystko – ugotowane w kosmicznym tyglu pierwiastki rozprzestrzeniają się w kosmosie, docierając czasem bardzo daleko. Teoria tych przemian została rozpracowana kilkadziesiąt lat temu przez kilku znaczących astrofizyków. Powtarzam: to była teoria, a, jak wiemy, papier wszystko wytrzyma. A dowody eksperymentalne? No właśnie – z tym był problem. Nie bardzo się da w laboratorium ziemskim stworzyć gwiazdę, spowodować jej przekształcenie w supernową i zrobić analizę tego, co się wydzieli. Do supernowej też nie polecimy, bo jest za daleko. Ale już wiele lat temu panowie Kirchhoff i Bunsen wpadli na pomysł, jak można zdalnie analizować światło emitowane przez obiekty kosmiczne. Pisałem o tym tutaj. Niemieccy fizycy oczywiście obserwowali światło widzialne, ponieważ w owym czasie nie zdawano sobie jeszcze sprawy z tego, że jesteśmy cały czas bombardowani promieniowaniem elektromagnetycznym o znacznie szerszym zakresie fal. Dziś już całkiem dobrze potrafimy je wykrywać i analizować. Od jakiegoś czasu astrofizyka coraz częściej sięga do obserwacji promieniowania gamma. Jest to silne promieniowanie elektromagnetyczne, niosące olbrzymią energię. Astronomowie zajmujący się tym promieniowaniem wyodrębnili osobną dziedzinę nauki, astronomię promieniowania gamma. Niestety, obserwacji nie da się prowadzić z powierzchni Ziemi, ponieważ atmosfera skutecznie je pochłania. Na szczęcie można wykorzystać do tego celu balony oraz rozmaite obserwatoria kosmiczne.

Rozbłyski gamma

W 1967 roku amerykański satelita wojskowy zarejestrował błysk promieniowania gamma. Wczesne analizy zakładały, że był on efektem próby jądrowej na terytorium ZSRR. Kolejne badania pokazały jednak, że nie pochodzą one ze źródeł ziemskich ani też z Układu Słonecznego. Kluczem tu jest izotropowość tych rozbłysków, czyli to, że dochodzą one do Ziemi dokładnie z wszystkich kierunków przestrzeni kosmicznej, jak promieniowanie reliktowe. Gdyby natomiast GRB pochodziły z bliska, tzn. z wyłącznie z Układu Słonecznego, rejestrowano by ich więcej w płaszczyźnie układu/dysku

Dziś rozbłyski gamma są wykrywane przez wiele teleskopów, głównie tych, które znajdują się w kosmosie. Są to gigantyczne wyrzuty wysokoenergetycznego promieniowania, a więc muszą pochodzić z bardzo wielkich zdarzeń kosmicznych. Zwykle jest to albo zderzenie gwiazd neutronowych albo takiej gwiazdy z czarną dziurą. Rozróżniamy rozbłyski krótkie (do 2 s), długie (powyżej 2 s) oraz bardzo długie (powyżej 10 tys. s). Najczęściej rejestrowane są rozbłyski długie.

Do gry wchodzi teleskop Jamesa Webba

Pod koniec października NASA opublikowała informację, że zespół kilku teleskopów, w tym James Webb Telescope oraz Fermi Gamma Ray Telescope, w marcu 2023 r. zarejestrował bardzo silny rozbłysk gamma, który oznaczono jako GRB 230307A.

Obraz rozbłysku GRB 230307A – to jest ta mała czerwona kropka po lewej. Z prawej galaktyka, z której “urwały się” gwiazdy

Dokładna analiza pokazała, że rozbłysk pochodził ze zderzenia dwóch gwiazd neutronowych odległych od Ziemi o ok. 1 mld lat świetlnych. Jak do tego doszło? Dawno, dawno temu w odległej galaktyce (tak, wiem, skąd ten cytat) para gwiazd się zbuntowała i odleciała. Gdy znalazły się w odległości ok. 120 tys. lat świetlnych od macierzystej galaktyki, nastąpiło między nimi gwałtowne zderzenie. Spowodowało ono emisję promieniowania gamma milion razy silniejszą niż całe światło Drogi Mlecznej. Zjawisko to znane jest pod nazwą „kilonowa”, ponieważ wydzielona energia odpowiada mocy tysiąca zwykłych nowych. Pierwsze teoretyczne modele tego zjawiska opracował polski astronom, Bohdan Paczyński (dalej będzie trochę o nim).

Po +/- miliardzie lat promieniowanie to dotarło do Ziemi i zostało zarejestrowane. Cała obserwacja trwała ok. 200 s. Uzyskano wiele bardzo interesujących danych, z których za najważniejszą uznano potwierdzenie obecności w pozostałościach po gigantycznym wybuchu śladów telluru, pierwiastka znacznie cięższego niż żelazo. Jest to dość rzadki pierwiastek, w układzie okresowym znajdziemy go w grupie tlenowców, pomiędzy selenem i polonem.

Widmo emisyjne kilonowej – schodkowe dane są z teleskopu Webb, czerwona linia to model widma emisyjnego. Powierzchnia pod krzywą (czerwona) wskazuje na obecność telluru.

Źródło: NASA, licencja:  domena publiczna, NASA, ESA, CSA, Joseph Olmsted (STScI)

Powstał on najprawdopodobniej w procesie r, który opisałem powyżej. To, że uzyskano takie właśnie dane, zawdzięczamy właśnie teleskopowi Webba. Część danych wskazuje, że są tam też obecne cięższe pierwiastki – lantanowce i aktynowce, ale to jeszcze wymaga solidnego potwierdzenia. Badacze uważają, że analizy kolejnych rozbłysków gamma pozwolą na wykrycie kolejnych ciężkich pierwiastków, co przyczyni się do doświadczalnego potwierdzenia, że właśnie proces r odpowiada za nukleosyntezę jąder cięższych od żelaza.

Swoistą ciekawostką jest to, że wykryto właśnie tellur, pierwiastek, którego nazwa pochodzi od łacińskiego „tellus”, co oznacza ziemię. W skorupie ziemskiej jest go zaledwie 5 ppb (części na miliard) i oczywiście każdy z atomów powstał gdzieś daleko podczas eksplozji lub zderzeń gwiazd.

Myślę, że niebawem dostaniemy wiele więcej informacji, nie tylko z tego rozbłysku, ale też z innych, które są obecnie analizowane.

Bohdan Paczyński (1940-2007)

źródło: wikimedia, licencja: CC BY SA 3.0

Jeśli spytalibyśmy ludzi o wybitnych polskich astronomów, zapewne padłoby nazwisko Kopernika. Ktoś pewnie wspomniałby jeszcze Aleksandra Wolszczana, pierwszego odkrywcę egzoplanety. I tyle. Tymczasem Bohdan Paczyński wielokrotnie był wymieniany jako kandydat do Nobla. Niesamowicie błyskotliwy pierwszy artykuł naukowy opublikował w wieku 18 lat, doktorat obronił w wieku 24, a tytuł profesorski otrzymał w wieku lat 34. Gdy miał 36 lat, został najmłodszym członkiem PAN. Zajmował się wieloma zagadnieniami, w tym właśnie rozbłyskami gamma. Od 1981 roku pracował w Princeton. Jego hipoteza o tym, że rozbłyski gamma pochodzą spoza naszej galaktyki, była przez lata ignorowana, dopiero po jakimś czasie zaczęła zyskiwać popularność. Dziś wiemy, że miał w 100% rację. Szkoda, że nie dane mu było dożyć odkryć z ostatnich lat. Zmarł w 2007 roku, po kilkuletniej walce z glejakiem mózgu.

Literatura dodatkowa

Doniesienie NASA o odkryciach

Bardzo długie rozbłyski gamma

O powstawaniu ciężkich pierwiastków chemicznych