Zimna fuzja – czyli porozmawiajmy o sci-fi

Skąd moje wątpliwości? Skoro zostałem poproszony o rozwinięcie myśli zawartej w cytowanym komentarzu, to skorzystam z możliwości publikacji na łamach naszego portalu − tu mam po prostu więcej znaków za darmo. Autor cytowanego komentarza omyłkowo nazwał trwające od lat pięćdziesiątych ubiegłego wieku badania nad fuzją jądrową badaniami nad “zimną fuzją”. Projekty takie jak np. ITER starają się opanować w warunkach ziemskich fuzję termojądrową. Jak do tej pory próby te spełzły na niczym i nie sądzę, aby udało się szybko osiągnąć jakiś znaczący przełom niezależnie od zainwestowanych środków, bo to po prostu karkołomne zadanie.

Fuzja termojądrowa to fuzja “gorąca” − bardzo gorąca, bo mowa o materii rozgrzanej do milionów kelwinów, którą trzeba kontrolować za pomocą np. pola magnetycznego. Tylko w takich warunkach jądra atomowe mogą się skleić, tworząc inne. Wiemy to z obserwacji − także naocznych. Słońce “świeci”, a energia do tego procesu musi skądś się brać. Jedynym źródłem jest sama materia, z której jest ono zbudowane. Wiemy również że proces ten jest inny niż proces spalania węgla. Z doświadczeń w warunkach ziemskich wiemy też, że gdy porównać masę np. dwóch protonów i dwóch neutronów z masą jądra 4He (składającego się z dwóch protonów i dwóch neutronów), to okaże się, że choć położyliśmy po obu stronach wagi takie same nukleony, to jądro helu jest lżejsze. Oznacza to, że łączenie lekkich jąder w cięższe powoduje, iż otrzymujemy energię, którą można wykorzystać.

Tylko jak przekonać jądra np. wodoru, aby zachciały połączyć się w jądro helu? Przenoszą ten sam ładunek elektryczny, czyli gdy zbliżać je do siebie, to będą się odpychać − co ustalił niejaki Coulomb, stawiając barierę związaną z oddziaływaniem elektrostatycznym. Pokonanie tej bariery jest możliwe, o czym świadczy istnienie np. tlenu, żelaza czy uranu. Jądra tych pierwiastków zawierają wiele protonów o dodatnim ładunku elektrycznym, które powinny się odpychać, a jednak istnieje tajemnicza siła, która je spaja. Jest silniejsza od elektromagnetyzmu, więc nazwano ją oddziaływaniem silnym. Jest ono krótkozasięgowe: obszar, na którym przeważa nad elektromagnetyzmem to dystans około 10-15 m (biliardowe części metra) i taki jest mniej więcej rozmiar protonu, będącego jądrem powszechnie występującego protu, tj. jednego z izotopów wodoru. Tego akurat mamy we Wszechświecie mnóstwo, więc opanowanie procesu, który pozwoliłby zamienić go w hel i uzyskać energię, to gra warta świeczki.

W gwiazdach, posiadających masy nieporównywalnie większe niż masa naszej planety, sprawiają to grawitacja i temperatura. Ogromna temperatura oznacza po prostu, że cząstki bardzo energicznie drgają, a to z kolei oznacza wysoką energię kinetyczną, zdolną do pokonania bariery związanej z ładunkiem elektrycznym i umożliwiającą zbliżenie się cząstek na tyle, by oddziaływanie silne mogło złączyć je w większe jądro. Jak wysoka temperatura pozwoli nam na fuzję? Około 15 milionów kelwinów. Dla porównania, mój termometr na zewnątrz pokazuje wartość 291,15 K. Wszystkie nasze dotychczasowe próby z fuzją polegały na rozgrzaniu materii w ten czy inny sposób i utrzymaniu jej razem na tyle długo, by proces ten mógł zajść tak, jak zachodzi w gwiazdach. I jak do tej pory jedyne sukcesy można porównać do rozpalenia zapałki przy pomocy lasera: da się, ale to niepraktyczne. Opanowanie fuzji na gorąco wymaga jeszcze wielu lat badań i rozwiązania wielu problemów związanych z radioaktywnymi odpadami czy promieniowaniem gamma, które powstają w takim procesie w obfitości.

A co z “zimną fuzją”? Tak nazywa się każdy proces, który mógłby doprowadzić do powstania nowego jądra atomowego z połączenia dwóch lżejszych w warunkach mniej ekstremalnych niż te panujące we wnętrzach gwiazd. Biorąc pod uwagę powszechność występowania paliwa, które można wykorzystać do fuzji jądrowej, to mielibyśmy spokój z energią właściwie do końca istnienia Układu Słonecznego! Jeśli do tego czasu nie wymyślimy czegoś innego, to i tak nie będzie to miało żadnego znaczenia dla naszego gatunku. Czy to jednak możliwe w jakikolwiek sposób? Czy bez olbrzymiej temperatury i grawitacji da się jakoś przekonać cząstki o tożsamym ładunku elektrycznym do zbliżenia się do siebie na tyle, by siły jądrowe mogły zadziałać?

Naukowcy z Lawrence Livermore National Laboratory mają sposób! Oprócz projektu znanego jako National Ignition Facility, który bada fuzję na gorąco, bada się tam również zjawisko tzw. “eksplozji Coulombowskiej”. Jeśli zgromadzić jądra deuteru w jednym miejscu, a następnie je zjonizować, to zaczną się odpychać − tym silniej, z im większą liczbą sąsiadów muszą się odpychać. Daje to mnóstwo energii potencjalnej, którą można zamienić w kinetyczną. Proces ten polega na rozprężeniu deuteru w komorze próżniowej w niskiej temperaturze. Powstała mgła jest jonizowania impulsami lasera. Całkowita jonizacja atomów deuteru powoduje, że zaczynają się one odpychać tak silnie, iż mogą przekroczyć barierę elektrostatyczną. Przy czym ten proces, jak wykazały wielokrotnie powtarzane eksperymenty, jest możliwy wyłącznie w skali mikro. To nie jest droga do zbudowania reaktora, który umożliwi nam pozyskiwanie energii z procesu fuzji w sposób ciągły i użyteczny.

Czy więc istnieją jakieś sposoby, aby doprowadzić do fuzji w inny sposób, niż nadając cząstkom temperatury rzędu milionów kelwinów lub rozpędzając je w akceleratorach takich jak LHC? Skoro rozmawiamy o cząstkach posiadających ładunki elektryczne, to może wykorzystać jakoś silne pole magnetyczne, którym zepchniemy jądra deuteru na tyle blisko, aby zaszła fuzja? Tak, to możliwe, z tym że potrzebne by było pole o natężeniu ok. 1011 T, czyli mniej więcej takie, jakie panuje we wnętrzach gwiazd neutronowych − wystarczające do zabicia każdego żywego organizmu. Nie chcemy tego robić.

No, ale może da się jakoś inaczej? Przecież można rozpędzić jony w polu elektromagnetycznym i ostrzelać nimi inne, znajdujące się względem nich w spoczynku? Taką możliwość dają kryształy piroelektryczne, tj. takie, które wytwarzają pole elektryczne w wyniku podgrzewania. Taki eksperyment wykonano w 2005 roku na Uniwersytecie Kalifornijskim, gdzie podgrzewano kryształ z jednej strony. Powodowało to powstanie pomiędzy jego końcami pola elektrycznego, które przyśpieszało jony natężeniem rzędu 25 GV/m! Zmierzona energia jonów dochodziła do 100 keV, co odpowiada temperaturze ok. 1 GK a więc znacznie przewyższającej potrzebną do zajścia fuzji. To faktycznie działa; problemem jest tylko, tak jak w poprzednim przypadku, skala: nie da się wykorzystać tego zjawiska do budowy reaktora, bo nie istnieją odpowiednio duże kryształy ani nie da się ich wytworzyć w żaden sposób. Zresztą nawet gdyby się dało, to w większej skali sama temperatura cząstek zniszczyłaby taki kryształ, a jednorazowa elektrownia nam do niczego niepotrzebna. W małej skali to świetne źródło neutronów i nic poza tym.

No to może jeszcze inaczej? Weźmy taką cząsteczkę wody: H2O czyli H+ i OH. Można rozbić ją na dwa jony − da się tak zrobić przy pomocy elektrolizy, podczas której przepływ prądu sprawi, że jony naładowane dodatnio będą zbierać się na katodzie, a ujemnie na anodzie. A jeśli zbierze się dostateczną ilość odpowiednich jonów? Tak właśnie pomyśleli panowie Pons i Fleischmann gdy w 1989 prowadzili elektrolizę ciężkiej wody − tj. wody zawierającej w cząsteczce jądra deuteru zamiast protu − przy użyciu porowatej katody wykonanej z palladu. Dodatkowe ciepło wytwarzane w tym procesie oraz produkty reakcji wskazywały na fuzję. Podobne wyniki szybko osiągnięto w kolejnych laboratoriach − ot, naukowcy tak bardzo chcieli, żeby to była prawda, że ulegli efektowi potwierdzenia (o którym więcej możecie przeczytać tutaj Efekt potwierdzenia, czyli złoty interes Martina Frobishera) i widzieli coś, czego tak naprawdę nie było. Kolejne dokładne testy i eksperymenty zaprzeczyły, aby w takich warunkach mogło dochodzić do fuzji, choć nie wykluczono, że panowie wpadli na trop jakiego nowego zjawiska fizycznego.

Wiadomo też o niejakim A. Rossim, który w 2011 uzyskał patent na urządzenia nazwane “katalizatorem energii”. Ma ono rzekomo prowadzić do fuzji atomów niklu i wodoru, powodując powstanie miedzi. Komora reaktora ma zawierać jakieś bliżej niesprecyzowane katalizatory i ogrzewać się w wyniku zjawiska oporności elektrycznej. Ponieważ Rossi odmawia poddania urządzenia niezależnym testom, jak również nie opublikował opisu rzekomo zachodzącego zjawiska, to uważam, że można je postawić na tej samej półce, na której trzymamy “perpetuum mobile” i homeopatię. Mamy rok 2024 i żadna wielka korporacja nie zainteresowała się przez tyle lat tak wspaniałym wynalazkiem? Nikt nie chce taniego źródła energii? No, głupi ludzie…

Oczywiście nie można wykluczyć, że fuzja tego rodzaju zachodzi spontanicznie, choć niezwykle wolno − jednak, jak wskazują obliczenia, czas potrzebny na zajście takiego zjawiska (jeśli jest możliwe) przekracza czas życia Wszechświata jakiś miliard razy.

Rozwiązaniem naszych problemów z energią wydają mi się reaktory torowe, o których pisałem więcej w tekście pt. O torze i kserze. Przede wszystkim wiemy, że mogą działać, i taka technologia już istnieje − po prostu musimy ją wdrożyć na szeroką skalę i upewnić się, że nie zachodzi nic nieprzewidzianego. Paliwo do nich jest praktycznie wszędzie, same są w stanie dopalić już istniejące odpady z innych reaktorów, a ich odpadami będą w większości cenne gazy szlachetne lub izotop plutonu mający zastosowanie w bateriach RTG (Radioisotope Thermoelectric Generator o których więcej w tekście Pluton-238 – na przystanku po drodze w Kosmos). Dodatkowo będą to konstrukcje samoistnie bezpieczne. Bądźmy realistami: fuzja to faktycznie rzecz atrakcyjna, ale czy ekonomiczna i możliwa do wdrożenia w skali stu lat?

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem
.

Końca nie widać…

W rozmowie, którą prowadziłem ze znajomą z Twittera, padło pytanie o to, czy są jeszcze jakieś nieodkryte pierwiastki. Uważam, że odpowiedź “tak” stanowczo nie wyczerpuje tematu, więc jak zwykle zastanówmy się nad tym, co pamiętamy z lekcji chemii w szkole. Pewnie pamiętacie, że siódmy okres układu zawierał w sobie trzyliterowe symbole zaczynające się od “U”: pojawiał się tam symbol Uub a następnie Uut, Uuq, Uup, Uuh i tak dalej aż do Uuo. Kryły się pod nimi pierwiastki, których istnienia domyślaliśmy się z prawa okresowości, na którym opiera się układ okresowy.

Zacznijmy może od wyjaśnienia znaczenia samych symboli pierwiastków hipotetycznych. Zgodnie z nazewnictwem IUPAC (Międzynarodowej Unii Chemii Czystej i Stosowanej) symbol takiego pierwiastka jest zawsze trzyliterowy i pochodzi od połączenia pierwszych liter rdzeni liczbowych odpowiadających kolejnym cyfrom jego liczby atomowej, przy czym pierwsza litera takiego symbolu jest zawsze duża. Spójrzmy więc na ilustrację poniżej:

Jest to banalnie proste. W nazwie wystarczy połączyć trzy rdzenie. Spróbujmy więc odczytać symbol Unq według tej reguły. Un (1) nil (0) quad (4), czyli mowa o pierwiastku o liczbie atomowej 104, nazywanym według tej reguły unnilquad. Pod symbolem Uup kryje się wobec tego ununpent i tak dalej. Według tej reguły można konstruować kolejne nazwy i symbole hipotetycznych pierwiastków właściwie aż do Eee czyli ennenenu, mającego liczbę atomową 999, czyli dokładnie tyle protonów w jądrze. Tylko czy tworzenie takich symboli ma sens fizyczny, czy to tylko sztuka dla sztuki, gdyby ktoś chciał potrenować dykcję?

Stan wiedzy na dzień dzisiejszy jest taki, że możecie spokojnie zapomnieć o symbolach od Uub do Uuo. Obecnie układ okresowy zawiera 118 nazwanych pierwiastków; te o liczbach atomowych od 112 do 118 noszą kolejno nazwy: kopernik, nihon, flerow, moskow, liwermor, tenes i oganeson. Jeśli nie znacie tych nazw, to żaden wstyd − wszystkie odkryto po roku 2000. Nie wiem tylko, czy “odkryto” jest tu właściwym słowem. Wszystkie pierwiastki zawierające w jądrze więcej protonów niż ołów nie posiadają żadnych stabilnych izotopów. Ulegają rozpadowi radioaktywnemu z czasem półtrwania od miliardów lat (dzięki temu w naturze istnieją jądra takich pierwiastków jak tor czy uran) do milisekund. Jedyne jądra cięższe niż uran, jakie znaleźliśmy na naszej planecie, to śladowe ilości jąder neptunu i plutonu w rudach naturalnie występującego uranu. I to jest dziwne.

Jedyny proces rozpadu radioaktywnego, który zwiększa liczbę protonów jądrze, to rozpad beta minus, w którym jeden z neutronów przemienia się w proton. Uran nie rozpada się w ten sposób; wszystkie znane nam jego izotopy ulegają rozpadowi, emitując cząstkę alfa, tj. cząstkę składającą się z dwóch protonów i dwóch neutronów. Neptun i pluton mają więcej protonów w jądrze niż uran więc na pewno nie powstały w wyniku jego rozpadu. Najtrwalszy izotop neptunu to 237Np, którego czas połowicznego rozpadu to około 2 miliony lat; w przypadku plutonu jest to około 80 milionów lat dla najtrwalszego 244Pu i około 24,4 tysiąca lat dla spotykanego tam również izotopu 239Pu. Nawet jeśli jakiekolwiek ilości tych izotopów istniały przy powstaniu naszej planety, to nie było szans, aby dotrwały do naszych czasów. No ale jak sam napisałem, znaleźliśmy ich śladowe ilości w rudach uranu, a więc musiały się tam skądś pojawić.

Analiza złóż uranu, w których natrafiono na wspominane izotopy, naprowadziła badaczy na rozwiązanie. W 1972 roku grupa francuskich badaczy zauważyła, iż w złożu znajdującym się w Oklo na terenie Gabonu występuje pewna różnica zawartości izotopów uranu w rudzie. Jak do tej pory wszystkie badane złoża cechowała pewna prawidłowość: pochodząca z nich ruda uranu zawierała dokładnie 0,72% izotopu 235U; próbki pochodzące z Oklo zawierały go zaś znacznie mniej. Prawdę mówiąc, skład izotopowy rudy z tej kopalni bardzo przypominał skład wypalonego paliwa jądrowego. Co było takiego szczególnego w tym miejscu? Jaki był powód, dla którego ruda wydobywana w tej kopalni była inna niż wszędzie?

Obecnie neptunu mamy coraz więcej. Jak wspomniałem wcześniej, jest to odpad z wypalonych prętów paliwowych, których używamy w elektrowniach atomowych. Wymuszamy rozpad izotopu 235U, bombardując go neutronami, no ale pręty zawierają również w przewadze izotop 238, który może taki neutron pochłonąć, zwiększając swoją liczbę masową o 1. Takie jądro jest niestabilne i ulega rozpadowi beta minus, przemieniając się w neptun; dalsze bombardowanie pozwoli uzyskać pluton. Nasuwa się pytanie: czy taki proces mógł zajść naturalnie? Przecież paliwo używane w elektrowniach atomowych wymaga wcześniejszej obróbki, tak aby stosownie zwiększyć zawartość izotopu 235. Tak, teraz wymaga − ale czy taka konieczność występowała zawsze w przeszłości? Izotopy mają różne czasy połowicznego rozpadu. Zawartość tego, którego czas półtrwania jest krótszy, będzie maleć w czasie. I tak dzieje się z naturalnie występującym uranem: zawartość rozszczepialnego izotopu maleje, choć miliardy lat temu była wyższa. Oznacza to, iż wystarczyło zgromadzić w jednym miejscu odpowiednią jego ilość, aby mogła zajść reakcja łańcuchowa. O to postarała się rzeka płynąca w pobliżu Oklo, odpowiedniczka dzisiejszej Ogowe. Jej wody wymywały rudy uranu, gromadząc je np. w zakolach. Kolejnym szczęśliwym zbiegiem okoliczności jest sama woda − używamy jej w naszych reaktorach zarówno jako chłodziwa, jak i moderatora. Szacuje się że naturalny reaktor w Oklo mógł działać przez ok. 300 tysięcy lat, wytwarzając 100 mld kWh energii.

Czy tak więc wytworzono pozostałe pierwiastki siódmego okresu? Bombardując coraz cięższe jądra neutronami? Nie, to absolutnie bez sensu. Szanse na powstanie jądra w ten sposób są niewielkie, co oznacza konieczność posiadania wydajnych źródeł neutronów, a tymi są inne radioaktywne pierwiastki, których nie posiadamy nieograniczonych ilości. Swobodny neutron istnieje średnio około 15 minut, zanim ulegnie przemianie w proton, więc nie ma sensu nałapanie ich na zapas. Zresztą, jak wspomniałem, im jądro ma większą liczbę atomową, tym krócej istnieje, więc nie tylko musielibyśmy mieć dużo neutronów, ale również używać ich z odpowiednią precyzją, tak aby wstrzelić się we właściwy moment. Pewnym rozwiązaniem wydaje się użycie cząstek alfa: jeśli jądro je pochłonie, to zyskuje dwa protony i dwa neutrony, co daje więcej możliwości. Tak zresztą uzyskano pierwiastki takie jak np. kaliforn, nobel czy lorens. Tylko że nadal mówimy o liczbach atomowych nie większych niż 103. Dalsze doklejanie cząstek alfa w ten sposób staje się ekstremalnie trudne. Potrzeba nam bardziej wydajnego źródła neutronów i innych obiektów, które możemy wykorzystać.

O jakim bardziej wydajnym źródle mowa? Oprócz reaktorów mamy przecież bomby atomowe, w których zachodzą dokładnie te same procesy, co w reaktorze. I jest to prawda: w obszarach testów broni atomowej znaleziono pewne ilości jąder ameryku i kiuru. Tylko znów nie jest to odpowiednia metoda, aby produkować ciężkie jądra pierwiastków. Nie możemy w imię nauki robić rzeczy powodujących przedostawanie się odpadów tego rodzaju do środowiska, a w przypadku eksplozji bomby atomowej jest to nieuniknione: produkty rozszczepienia przedostają się do atmosfery, by opaść w najmniej spodziewanych miejscach. Pewne ilości ameryku znaleźliśmy m.in. na Antarktydzie oraz w koralowcach. Jak więc stworzyliśmy jądra pierwiastków od 104 do 118? Nie inaczej niż wcześniejsze: bombardując ciężkie jądra, tyle że nie cząstkami alfa, a czymś o wiele cięższym − jonami. Z tym że nie mogą być to jądra dowolnych pierwiastków, ale takich, których izotopy zawierają odpowiednie liczby protonów i neutronów. Jądra koperniku uzyskano na przykład, ostrzeliwując tarczę wykonaną z ołowiu jonami cynku rozpędzonymi uprzednio w akceleratorze do około 1/10 prędkości światła. Następnie powstałe jądra trzeba jak najszybciej schłodzić i liczyć na to, że uda się je złapać w odpowiednich detektorach. Ostatni z pierwiastków, tj. oganeson, udało się wytworzyć w ilości zaledwie czterech… jąder. To naprawdę droga zabawa: potrzeba odpowiednich izotopów, które dają szansę zlepienia się z ostrzeliwanymi w proporcjach pozwalających na istnienie choćby przez ułamek sekundy.

Czy wobec tego warto kontynuować? Prowadzić skomplikowane eksperymenty, których efektem są izotopy nie mające żadnego realnego zastosowania z uwagi na czas ich istnienia? Czy warto próbować z ósmym okresem? Gdzie jest koniec układu?

Mamy powody, aby przypuszczać, że ostatni z odkrytych pierwiastków, choć w konfiguracji elektronowej przypomina pozostałe gazy szlachetne, w standardowych warunkach jest ciałem stałym. Przyczyny tego należy upatrywać w tym samym zjawisku, które opisałem w tekście pt. Dlaczego złoto jest złote?. Im większa liczba protonów w jądrze, tym większa musi być liczba elektronów w samym atomie, aby pozostawał on elektrycznie obojętny. O ile nie można tych obiektów traktować jak naładowanych elektrycznie kuleczek krążących wokół jądra pozlepianego z kuleczek o ładunku przeciwnym, o tyle można im przypisać pewną cechę obiektów krążących po orbitach − moment pędu. Im jądro większe, tym szybciej musi się poruszać elektron znajdujący się na najbardziej zewnętrznej powłoce elektronowej. W przypadku superciężkich pierwiastków prędkości te stają się istotnymi ułamkami prędkości światła, co powoduje, że musimy uwzględniać efekty takie jak np. relatywistyczny wzrost bezwładności ciał w ruchu, popularnie, choć niezbyt szczęśliwie nazywany “relatywistycznym wzrostem masy”. Jakie ma to znaczenie dla granicy układu okresowego? Żaden obiekt obdarzony masą nie może osiągnąć prędkości światła, gdyż wymagałoby to nieskończonej energii. W przypadku oganesonu prędkości elektronów na powłoce walencyjne to około 70% prędkości światła. Może to oznaczać, że granica układu okresowego jest już gdzieś niedaleko, a jest nią ta liczba protonów, powyżej której elektron musiałby poruszać się szybciej niż światło. Szacuje się, że jest to nie więcej niż liczba Z = 210. Jeśli granicą jest prędkość c, to układ okresowy zamyka hipotetyczny biunnil.

Tylko jak to sprawdzić, skoro już obecnie wytwarzane jądra istnieją przez ułamki sekund? Pewnym rozwiązaniem może być model, przy którego powstaniu ogromy udział miała urodzona w Katowicach Maria Goeppert-Mayer. Zaproponowała ona mechanizm wyjaśniający powód, dla którego pewne izotopy są szczególnie stabilne. Pozwolę sobie zacytować słowa samej badaczki:

Wyobraź sobie salę pełną tańczących walca. Tancerze przesuwają się dookoła tej sali w koncentrycznych kołach. Dalej pomyśl, że w każdym kole możesz zmieścić dwa razy więcej tancerzy jeśli jedna para wiruje w kierunku ruchu wskazówek zegara, a druga w przeciwnym. A potem dodatkowa wariacja: pomyśl, że ci tancerze wirują w porywach, jak mistrzowie. Niektóre z tych par, które wirują w kierunku wskazówek zegara robią porywy w tym samym kierunku. Porywy pozostałych par są w kierunku przeciwnym. Tak samo z parami wirującymi w kierunku przeciwnym do kierunku wskazówek zegara – niektóre wykonują zrywy w tym samym kierunku, inne w przeciwnym.

Nie przypomina wam to czegoś? Atomy są szczególnie stabilne, gdy mają wypełnioną ostatnią powłokę elektronową, tak jak gazy szlachetne. Jądra wg. Marii są szczególnie stabilne, gdy mają wypełnione odpowiednie powłoki nukleonowe, które mogą być zajmowane przez pary protonów i neutronów. Liczby protonów i neutronów przy których powłoki nukleonowe są zamknięte, a dany izotop bardziej trwały w stosunku do sąsiednich, to 2, 8, 20, 28, 50, 82, 126 i 184 dla samych neutronów. Biorąc pod uwagę, że najcięższe stabilne jądro to 208Pb o magicznych liczbach protonów (Z=82) i neutronów (N=126), to rzecz wydaje się warta uwagi, zwłaszcza że sprawdza się również w innych przypadkach. Obliczenia wskazują iż kolejne liczby magiczne dla protonów to być może 114 i 120 a dla neutronów może być to liczba 196. Oznacza to że izotopy pierwiastków z ósmego okresu takie jak 304Ubn i 310Ubh powinny wykazywać podwyższoną trwałość i mieć izotopy istniejące nawet kilka miesięcy, choć ja przychylam się do opinii mówiących o godzinach.

fot. domena publiczna

Większość syntezowanych superciężkich jąder rozpada się w czasie rzędu milisekund, ale gdy uda się uzyskać jądra o większych liczbach neutronów, to zauważamy obszar nazywany wyspą stabilności W przypadku koperniku (Z=112) dodawanie kolejnych neutronów sprawia że jego izotop o liczbie masowej 285 ma czas połowicznego rozpadu ok. 29 sekund, a metastabilny izomer nawet 9 minut! Gra wydaje się być warta świeczki, stąd nasze, dotychczas bezskuteczne, próby syntezy unbinilu i unbiheksu. Jeśli uda się nam uzyskać odpowiednio stabilne izotopy tych pierwiastków, będzie to okazja, aby sprawdzić obliczenia, z których wynika, iż kolejna wyspa stabilności powinna znajdować się w okolicach liczby atomowej 164, gdzie mogą występować izotopy o czasach półrozpadu nawet rok i dłużej.

Takie pierwiastki mogą mieć interesujące zastosowania jako wydajne źródła neutronów czy materiał, którego będziemy używać do rozpoczęcia reakcji łańcuchowych w przyszłych reaktorach torowych. A najważniejszym powodem ich odkrycia jest w gruncie rzeczy nasza ciekawość, dzięki której nauka nigdy się nie kończy a Wszechświat zaskakuje nas coraz bardziej.

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem
.

Promieniujące orzechy – czyli znów ci dziennikarze…

Podejrzewam, że do świąt będę miał na tapecie przynajmniej po jednym dziennikarzu z każdej z tzw. “szanujących się” redakcji gazety czy radia. Mieliśmy już na tapecie “wyłączanie pola magnetycznego” i “rozmiary cząsteczek elementarnych”, a dziś skupimy się na temacie promieniowania i radioaktywności. Nasz blog zawiera świetny cykl o samym promieniowaniu, który polecam pod poniższym linkiem: Promieniowanie.

Co spowodowało, iż znów załamałem ręce? Zajrzyjcie pod ten link, bo brzmi naprawdę groźnie! https://pomorska.pl/oto-najbardziej-radioaktywne-produkty-spozywcze-lista-one-maja-najwiecej-promieniotworczych-pierwiastkow-9042024/ar/c14-18435665. Już pierwszy akapit powoduje we mnie poczucie, że znów nie wiem, o co chodzi, ale chyba powinienem się bać: “Każdy produkt spożywczy jest w pewnym stopniu radioaktywny. Poziom radioaktywności zależy od ilości znajdujących się w nim pierwiastków promieniotwórczych. Niekwestionowanym liderem są orzechy brazylijskie. Ich aktywność wynosi 6600 pCi/kg. Czy mogą zaszkodzić naszemu zdrowiu? Jakie jeszcze popularne produkty spożywcze znajdują się na liście? Szczegóły w naszym artykule.

Szanowna Pani − co to znaczy że aktywność wynosi 6600 pCi/kg? To dużo czy mało? Co to za jednostka i co to za lista produktów radioaktywnych? Jako że na wyjaśnienia autorki nie ma co oczekiwać, jak zwykle pomoże nasz blog.

Tak, każdy produkt jest w jakimś stopniu radioaktywny i ma to związek z zawartością pierwiastków promieniotwórczych, choć poprawnie należałoby powiedzieć − izotopów. O szczegółach już za chwilę, a teraz chciałbym się skupić na owym “6600 pCi/kg”. Jestem przeciwnikiem używania jednostek, z którymi Czytelnik nie spotyka się na co dzień, bez wyjaśnienia, co oznaczają. Metry, kilogramy czy sekundy są swojskie, ale takie pikokiury na kilogram (tak należy odczytać pCi/kg)? Jak bardzo radioaktywna jest garść takich orzechów i czy do wieczornego seansu nie należy jednak wybrać fistaszków?

Jednostki tej nie znajdziemy w Układzie SI − została ona nazwana na cześć jednej z najwybitniejszych Polek; myślę, że łatwo się domyślić, o kim mowa. Jeden kiur odpowiada aktywności 1g izotopu 226Ra. Nie jest to jednostka zbyt wygodna w stosowaniu, dlatego do opisu aktywności danej próbki lepiej posłużyć się bekerelem (Bq): jeśli w ciągu sekundy zajdzie w niej jeden rozpad promieniotwórczy, np. jeśli jedno jądro wyemituje jedną cząstkę alfa w tym czasie, to mówimy że aktywność próbki jest równa jednemu bekerelowi. 1 Ci (kiur) to w zaokrągleniu 37 GBq (gigabekereli), stąd łatwo obliczyć, że aktywność wspomnianych orzechów to około 244 Bq, czyli 244 rozpady w każdej sekundzie − pod warunkiem, że mamy pod ręką kilogram. Aktywność jednego orzecha będzie znacznie mniejsza. Kilogram kawy dla porównania charakteryzuje się aktywnością 1 kBq, czyli w każdej sekundzie zachodzi w nim tysiąc takich rozpadów. Może to jest przyczyną, dla której promieniujemy energią po małej czarnej? Żarty na bok. Powiedzieliśmy sobie jak na razie, że w żywności zachodzą rozpady radioaktywne i że nie ma w tym nic dziwnego. Wiemy również, że pracownicy palarni kawy nie pracują w strojach wymaganych przy pracy z materiałami radioaktywnymi. To jak to jest z tym, co na polu rośnie? Jeść − czy jednak przepijać każdy kęs płynem Lugola? Przepraszam, postaram się ograniczyć poczucie humoru, zwłaszcza tego rodzaju, wspomniany preparat nie jest “lekiem przeciwko promieniowaniu” i nie należy go spożywać. Spójrzmy na dalszą część cytowanego artykułu:

Wśród pierwiastków promieniotwórczych występujących w żywności można wymienić rad 226Ra, potas 40K, uran, cez czy stront. Niektóre z nich naturalnie występują w przetworach mlecznych, produktach zbożowych, owocach, warzywach czy wodzie mineralnej. Inne zaś, tak jak rad, migrują z gleby do roślin oraz wody, a następnie dostają się do organizmów zwierząt.

O ile zrozumiałbym taki zapis w SMS-ie, to szacunek dla Czytelników wymaga pewnej staranności: izotopy danych pierwiastków zapisujemy, umieszczając liczbę masową w lewym górnym rogu, tj. 226Ra, 40K. Nie rozumiem jednak, czemu podano promieniotwórcze izotopy dwóch pierwiastków, pomijając to przy następnych? Sugeruje to, że uran, cez i stront są promieniotwórcze w każdym przypadku, a tak nie jest. Uran, tak samo jak każdy pierwiastek zawierający w swoim jądrze więcej protonów niż ołów, nie posiada stabilnych izotopów, ale cez i stront jak najbardziej. Są to odpowiednio: 133Cs i 84Sr, 86Sr, 87Sr oraz 88Sr. Dalszej części cytowanego tekstu nie rozumiem do końca − bo co to znaczy, że w owocach są naturalnie a do roślin migrują z gleby? To skąd się wzięły w samych owocach?

Nie lubię pisania o radioaktywności w ten sposób. Sprawia to takie wrażenie, jakbyśmy nie stykali się z jakąś jej formą w każdej chwili. Wszystkie znane nam pierwiastki posiadają niestabilne izotopy; część z nich powstała naturalnie w toku procesów zachodzących np. we wnętrzach gwiazd. Tak na naszej planecie znalazły się np. uran i tor. Inne powstały i powstają w atmosferze Ziemi bombardowanej strumieniem promieniowania kosmicznego; przykładem jest tu radioaktywny izotop węgla 14C. Część z nich jest wtórnym efektem rozpadu uranu i toru, czego przykładem może być odkryty przez Marię Skłodowską rad. Inne to efekt naszych wesołych eksperymentów polegających na ostrzeliwaniu jąder neutronami bądź jonami. Choć jak wspomniałem, wszystkie pierwiastki posiadają izotopy promieniotwórcze, to z absolutną większością nigdy się nie zetkniecie: ich czas półrozpadu jest rzędu od mikrosekund do miesięcy. Te, z którymi mamy najczęściej kontakt, to izotopy potasu, węgla i pierwiastków będących produktami rozpadu uranu i toru. Ponieważ potas jest minerałem powszechnie występującym w skorupie ziemskiej, to rośliny pobierają go wraz z wodą z gleby. Ponieważ minerały zawarte w glebie to zawsze mieszanka różnych izotopów danego pierwiastka, to oczywistym jest, że drobna cześć pobranego przez roślinę potasu będzie radioaktywnym izotopem 40K.

Tych samych minerałów używamy do budowy naszych domów, dlatego same ściany naszych domów są w jakimś stopniu radioaktywne. Bardzo często mamy kontakt z jednym z produktów rozpadu uranu − jest to radon, który przecież jest gazem. W tej postaci ze skorupy ziemskiej trafia do atmosfery, gdzie ulega dalszemu rozpadowi, stając się radioaktywnym izotopem bizmutu 214Bi. Metale to ciała stałe, więc nie należy się dziwić, że czujniki różnych stacji notują zwiększony poziom promieniowania po każdym deszczu. Prawdę powiedziawszy, to radon jest odpowiedzialny za większość radioaktywności, z którą mamy kontakt w ciągu życia. Jest gazem, więc kumuluje się w zamkniętych pomieszczeniach, w których przecież spędzamy większość życia. Z tym, że nie ma się czego obawiać: w badaniach przeprowadzonych na obszarach o podwyższonej promieniotwórczości naturalnej nie odnotowano zwiększonej zapadalności na nowotwory. Czy więc należy się obawiać spożywania orzechów, bananów, kawy czy czegokolwiek? Nie, większe dawki przyjmujemy z innych źródeł i nie obserwujemy negatywnych efektów. Nie istnieje żaden sposób, aby uniknąć naturalnej promieniotwórczości; jest z nami od zawsze i będzie tak długo, jak długo będą istnieć jądra zdolne do rozpadu. Jeśli to, co chcecie zjeść, nie rosło na niezabezpieczonym składowisku odpadów radioaktywnych lub nie zostało wzbogacone intencjonalnie o takie pierwiastki, to absolutnie nie ma się czego obawiać.

fot. CC BY 3.0.

Oddziaływanie, któremu zawdzięczamy istnienie jąder atomowych, jest nazywane silnym. Biorąc pod uwagę jego zdolność do przezwyciężenia sił związanych z elektromagnetyzmem, jest to jak najbardziej usprawiedliwiona nazwa. Niestety zdolność ta jest ograniczona do bardzo krótkiego dystansu. Naprawdę krótkiego. Aby sobie to jakoś zobrazować, proszę sobie wyobrazić najmniejszy z atomów, czyli wodór. Jego promień atomowy wynosi ok. 5,291 772 · 10−11m − zasięg, na którym oddziaływanie silne jest zdolne do pokonania elektromagnetycznego, to 10 tysięcy razy mniej. No to jakim cudem istnieją (i mają się dobrze) jakiekolwiek jądra większe niż hel? Przecież to się (dzięki ładunkowi elektrycznemu jaki przenosi każdy proton) kupy nie trzyma w żaden sposób?

Trzyma! I musi się trzymać, czego dowodem naocznym są żelazne gwoździe! Oddziaływanie silne jest związane z ładunkiem umownie nazywanym kolorem, który przenoszą kwarki tworzące protony i neutrony. Cząstki przenoszące kolor mają specyficzną cechę: im bardziej próbujemy je wyrwać z układu z pozostałymi, tym mocniej się trzymają. Choćby włożyć w to dowolnie dużo energii, to i tak nigdy nie uzyskamy swobodnego kwarka, ale zawsze twór nazywany mezonem, składający się z pary kwark-antykwark. Właśnie wymiana takich par, noszących w omawianym przypadku nazwę pionów, pomiędzy protonami i neutronami trzyma jądra w całości. Z tym, że znów − zasięg takiego oddziaływania nie jest nieograniczony i aby istnieć, jądro musi zawierać neutrony, które stanowią rolę swoistego łącznika pomiędzy protonami. Dość naiwnie, ale w sposób wystarczający dla tego modelu, można sobie wyobrazić, iż wymiana pionów powoduje, iż każdy tworzący je neutron i proton cały czas zmienia swoją tożsamość.

No to prześledźmy pokrótce listę stabilnych izotopów, może rzuci się nam w oczy jakaś prawidłowość. Najbardziej popularny jest wodór w postaci protu. Zawiera w swoim jądrze jeden proton, a o ile nam wiadomo, protony się nie rozpadają. Gdy próbować skleić z sobą dwa protony, jak dzieje się to np. we wnętrzu Słońca, to efektem będzie nie 2He tylko 2H (D) czyli trwały izotop wodoru tj. deuter.

fot. domena publiczna

Stabilne izotopy helu zawierają w swoim jądrze jeden lub dwa neutrony, przy czym najbardziej rozpowszechniony jest wariant 4He czyli izotop zawierający w swoim jądrze dwa protony i dwa neutrony. Spójrzmy na węgiel: ma dwa stabilne izotopy, przy czym więcej jest tego zawierającego w jądrze 6 neutronów i 6 protonów. Podobna prawidłowość zachodzi dla azotu, tlenu i neonu. Przewagę mają izotopy zawierającego równą liczbę neutronów i protonów. W przypadku kolejnych pierwiastków pozostaje to prawdą dla pierwiastków o parzystej liczbie protonów w jądrze, w przypadku nieparzystej przewagę mają izotopy zawierające o jeden lub dwa neutrony więcej w porównaniu do liczby protonów.

Ostatnim pierwiastkiem spełniającym tę regułę jest wapń, którego najbardziej rozpowszechnionym izotopem jest 40Ca. Od tytanu zaczyna się to rozjeżdżać: przewagę mają te izotopy, w których jest nadmiar neutronów w stosunku do protonów, z tym że nie widać w tym żadnej prawidłowości. Jedyne, co rzuca się w oczy, to to, że pierwiastki o parzystych liczbach protonów mają więcej stabilnych izotopów w porównaniu do nieparzystych, które mają jeden lub dwa stabilne izotopy. Cyna, mająca liczbę atomową 50, ma aż dziesięć stabilnych izotopów, podczas gdy antymon o liczbie atomowej 51 jedynie dwa; kolejny tellur osiem, a następny jod jeden. Wyliczanka kończy się na ołowiu, który posiada cztery stabilne izotopy. Następny na liście jest bizmut z jednym izotopem, który nie jest stabilny, choć może się takim wydawać, bo jego czas półtrwania przekracza wiek Wszechświata. Kolejne pierwiastki nie mają już żadnych stabilnych izotopów, choć tor i uran posiadają na tym tle względnie dużo izotopów o czasie półtrwania do miliardów lat, co pozwala im występować naturalnie na naszej planecie. Liczba izotopów niestabilnych w przypadku poszczególnych pierwiastków pozwala nam dostrzec pewną zależność.

fot. CC BY 4.0.

Jeśli dany izotop leży poniżej ścieżki wyznaczonej przez izotopy stabilne, to jego sposób rozpadu będzie związany ze zmniejszeniem liczby neutronów w jądrze poprzez rozpad beta minus, czyli przemianę jednego z neutronów w proton przy jednoczesnej emisji elektronu i antyneutrina. Jeśli jądro zawiera niedobór neutronów w stosunku do izotopów stabilnych, to należy się spodziewać rozpadu beta plus, polegającego na przemianie protonu w neutron przy emisji pozytonu i neutrina. Jeśli dany izotop leży poza końcem ścieżki stabilności, to najczęściej rozpada się, emitując cząstkę alfa, składającą się z dwóch protonów i dwóch neutronów. Nie ma prostego algorytmu, który na podstawie liczby protonów w jądrze poda nam, ile możemy uzyskać izotopów danego pierwiastka, ale można zauważyć, że dla pewnych liczb protonów i neutronów w jądrze jest ono bardziej trwałe w stosunku do sąsiednich. Są to tzw. liczby magiczne: 2, 8, 20, 28, 50, 82, 126 i 184 dla samych neutronów. Biorąc pod uwagę, że najcięższe stabilne jądro to 208Pb o magicznych liczbach protonów (Z=82) i neutronów (N=126), to rzecz wydaje się warta uwagi, zwłaszcza że sprawdza się również w innych przypadkach. Zwracam uwagę, iż najbardziej rozpowszechniony izotop helu to 4He. Jest to szczególnie ciekawe w kontekście poszukiwania cięższych pierwiastków. Większość syntezowanych superciężkich jąder rozpada się w czasie rzędu milisekund, ale gdy uda się uzyskać jądra o większych ilościach neutronów to zauważamy obszar nazywany wyspą stabilności gdzie np. izotop 270Hs (pierwiastka zwanego hasem) ma czas półrozpadu ok. 22s! Sugeruje to, iż jądro, tak jak atom, posiada powłoki energetyczne możliwe do zajmowania przez jego składniki, a wypełnienie takich powłok sprawia, iż jądro jest stabilniejsze. Jest również nadzieja na syntezę dalszych pierwiastków, aby sprawdzić, gdzie leży granica!

Współczesna (2012) ocena położenia i rozmiarów wyspy stabilności, z maksimum czasu życia dla izotopów koperniku (Z = 112). Widoczny jest także obszar wysokiej niestabilności jąder, który dla obecnie badanych dróg syntezy rozciąga się powyżej Z ≈ 120

fot. domena publiczna

Kończąc ten tekst − zawsze, gdy ktoś w alarmistycznym tonie opowiada o radioaktywności wokół nas, to pamiętajcie, że macie z nią stały kontakt. Czy to w żywności, czy to podczas oddychania, czy z deszczem.

Spośród kilkudziesięciu izotopów promieniotwórczych występujących w sposób naturalny w przyrodzie, zaledwie kilka obecnych jest w różnych produktach spożywczych. Należą do nich przede wszystkim 14C, 40K oraz izotopy radu, toru i ich pochodne. Najbardziej rozpowszechniony jest izotop potasu 40K oraz izotop węgla 14C, które w organizmie człowieka o masie 70 kg odpowiadają za radioaktywność około 10 000 Bq.

W wyniku rozszczepienia ciężkiego jądra, np. uranu lub plutonu, powstaje około 100 różnych izotopów promieniotwórczych, jednakże tylko kilka z nich ma praktyczne znaczenie w przypadku skażenia żywności. Należą do nich głównie izotopy jodu, cezu i strontu, dla których ustalono normy zawartości zawierające się w przedziałach od 100 do 1000 Bq/kg w zależności od rodzaju izotopu (137Cs, 131I, 90Sr, 40K) i rodzaju żywności. Inne będą dla owoców, a inne dla mleka lub mięsa. O tym, dlaczego skupiono się na tych izotopach, oraz o tym, jak konkretnie przedostają się do środowiska, porozmawiamy sobie w kolejnym tekście, gdzie poruszę to w związku z rocznicą katastrofy w Czarnobylu.

(c) by Lucas Bergowsky
Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem
.