Czy biotechnolodzy tworzą coś nowego, czy kradną naturze?

Jak powiedział Picasso: „Dobrzy artyści kopiują, wielcy kradną.” Podobnie wyrażali się między innymi: Igor Stravinsky, T.S. Eliot czy Steve Jobs.

Te słowa nie są jednak pochwałą kradzieży, ale zachętą do pokory i szacunku wobec tych, którzy tworzyli coś wcześniej. Zachętą do przyznania, że coś stworzone wcześniej było co najmniej inspiracją dla kolejnych pokoleń artystów. Przykładem jest las Birnam z Makbeta Szekspira, który inspirował Tolkiena przy opisie ataku Entów (pasterzy drzew) na Isengard.

Czy biotechnolodzy kradną (plagiatują) w takim sensie? Podobnie, jak artyści obserwują efekty pracy innych artystów, również biotechnolodzy obserwują pracę innych biotechnologów. Pojęcie „patentów” w sztuce (poza muzyką) bywa trudne do zdefiniowania – nie patentuje się obrazów. W biotechnologii jest o patenty trochę łatwiej. Mimo to urzędy patentowe ze zmienną konsekwencją przyznają lub nie prawa patentowe (własności intelektualnej) kolejnym projektantom. Jednak biotechnolodzy i artyści „plagiatują” jeszcze inaczej. „Plagiatują” naturę, a ta nie pójdzie oczywiście do sądu. Okazuje się jednak, że ma ona swoich rzeczników w urzędach patentowych w kwestiach biotechnologicznych. Przez wiele lat w urzędach patentowych trwał wielki spór o to, na ile rozwiązania podpatrzone w naturze mogą być patentowane. Rzecznicy patentowi wyznaczyli pewne kryteria, po spełnieniu których patent zostanie przyznany. Natomiast, biorąc pod uwagę cytat z Picassa, wobec kogo czy czego taki „złodziej biotechnolog” powinien taki rodzaj szacunku okazać?

Przeciwciała, enzymy do testów PCR, plazmidy, wektory wirusowe, nagrodzony Noblem CRISPR, promotory, sekwencje nukleotydowe czy aminokwasowe i wiele innych „rzeczy”, „ukradli” wirusom i bakteriom (na końcu tekstu znajduje się glosariusz wyjaśniający używane terminy biotechnologiczne). Po co…? Wcześniej chociażby po to, by produkować białka terapeutyczne i diagnostyczne. Ostatnio wszystko to, czego trochę nakradli, składają jak klocki lego w zupełnie nowe twory terapeutyczne, nazywając to już nie biotechnologią, a biologią syntetyczną.

Plazmidy służą bakteriom do tworzenia np. białek antybiotykooporności. Biotechnolodzy zamienili te fragmenty DNA w plazmidach w transgeny do produkcji białek potrzebnych ludziom – chociażby do produkcji insuliny dla chorych na cukrzycę. Nie dość, że ukradli bakteriom pomysł, to jeszcze go wykorzystują do produkcji np. leków.

Polimerazowa reakcja łańcuchowa (PCR), która stała się powszechnie znana w czasie pandemii COVID-19, to również w pewnym sensie zasługa bakterii. Jedne z nich, aby żyć w gorących źródłach Yellowstone „wymyśliły” białka, w tym polimerazę, które są w stanie przetrwać w wysokich temperaturach, a to dzięki niej możliwe jest szybkie prowadzenie PCR. W czasie tej reakcji temperatura wielokrotnie osiąga ponad 90 stopni Celsjusza, a większość molekuł polimerazy nie może ulec denaturacji. Oczywiście biotechnolodzy – za pomocą plazmidów z transgenem – zmuszają zwykłe bakterie (głównie E.coli) do produkcji tej polimerazy. Kradną polimerazę z jednych bakterii, a inne zmuszają do niewolniczej produkcji.

Skąd się wzięła odwrotna transkryptaza potrzebna, aby przepisać RNA (wirusa takiego jak SARS-CoV-2) na DNA przed reakcją PCR? Również ona została „skradziona”, tym razem wirusom.

Technologia CRISPR, nagrodzona nagrodą Nobla w 2020 roku, służąca obecnie np. do naprawy uszkodzonych genów, wywodzi się z systemu bakteryjnego, którym bakterie zwalczają swoich wrogów, wirusy bakteryjne – bakteriofagi. Pierwsza terapia oparta o CRISPR do leczenia osób z chorobą genetyczną – chorobą sierpowatokrwinkową – została zarejestrowana przez FDA w 2023 roku. System, z którego wywodzi się CRISPR/Cas chroni bakterie przed ich wirusami – to „element układu odpornościowego bakterii”. Bakterie tworzą „biblioteki” fragmentów genomów fagowych, aby wtedy, kiedy któryś znowu zaatakuje, zniszczyć go. Tworzenie bibliotek fragmentów genomów fagowych w genomie bakteryjnym jest więc przez niektórych autorów określane mianem budowania pamięci immunologicznej. Natomiast biotechnolodzy wykorzystują CRISPR/Cas do naprawy genomu np. w ludzkich komórkach. Widać więc, że podpatrywanie natury miało miejsce, ale zastosowanie rozwiązania Cas9 z zaprojektowanym fragmentem RNA jest już zupełnie inne. Powstają kolejne metody edycji genomu, takie jak prime editing, w których podkrada się naturze coraz więcej. Nie wolno robić edycji genomu na poziomie komórek linii germinalnych czy komórek zarodkowych człowieka, ale wolno na poziomie komórek somatycznych (dojrzałych i multipotentnych macierzystych).

Biotechnolodzy równocześnie próbują wykorzystać również naturalnego wroga bakterii, jakim są bakteriofagi, po to, żeby bakterie zwalczać. Jest to szczególnie ważne wobec pojawiającej się antybiotykoodporności. Rozwiązanie takie zaczyna być stosowane w produkcji żywności, ponieważ stosowanie antybiotyków chociażby w uprawach roślin czy hodowli drobiu to jedna z głównych przyczyn pojawiania się antybiotykoodporności.

Jak widać, bardzo wiele systemów wykorzystywanych przez biotechnologów powstało w trakcie walki organizmów z ich patogenami. Co nie powinno dziwić, bo taka walka jest akceleratorem ewolucji, a zatem tworzenia coraz doskonalszych rozwiązań.

Nie jest to jednak jedyne źródło, z którego pozyskuje się narzędzia czy technologie.

Biotechnolodzy wykorzystują bakterie (np. Agrobacterium tumefaciens), aby tworzyć rośliny GMO. Normalnie bakterie te infekują rośliny i wprowadzają swoje geny, żeby pozyskiwać od roślin opiny.

Wektory wirusowe stosowane np. w terapii genowej to wykorzystanie ułomnych czynników infekcyjnych, które w formie kompletnej infekują np. komórki ludzi, a u biotechnologów infekują komórki, aby wprowadzić do nich to, co chcą w nich umieścić. Jeśli chcemy zastosować wspomniany wcześniej CRISPR/Cas, to także najczęściej wykorzystujemy wirusy jako wektory tego systemu. Jeśli chce się wprowadzić „transgen leczniczy”, to również tak to się odbywa.

Bakterie, aby walczyć z bakteriofagami, „wymyśliły” – podobnie (jak CRISPR/Cas) – enzymy restrykcyjne. Biotechnolodzy korzystają z nich notorycznie, aby tworzyć wektory do produkcji np. białek leczniczych. Paradoksalnie system, który miał chronić bakterie przed ingerencją w ich DNA, służy do zmieniania ich DNA plazmidowego.

Bakteriofagi posiadają natomiast specjalne rekombinazy, umożliwiające wprowadzanie ich genów do genomu bakterii. Biotechnolodzy zastąpili tym systemem fagowym enzymy restrykcyjne, aby skonstruować/wygenerować system gate way – bramkowania − i szybciej przenosić między plazmidami np. transgeny lecznicze.

Biotechnolodzy w ogóle bardzo często korzystają z rozwiązań powstających w trakcie ewolucji wirusów. Genomy wirusów są bardzo małe, gdyż od upakowania na małej przestrzeni wielu informacji zależy ich przetrwanie. Biotechnolodzy również muszą upakowywać dużo informacji na małej przestrzeni, co wynika z niuansów technicznych ich pracy.

Wirusy „wymyśliły” więc np. sekwencję IRES, która pozwala otrzymywać z jednego fragmentu mRNA coś, co u eukariotów jest kodowane przez kilka genów. Wirusy geny zastąpiły czymś, co nazywa się otwartymi ramkami odczytu. Nie ma potrzeby, żeby kontrolować pojawianie się białek wirusowych w tak skomplikowany sposób, jak np. w komórkach człowieka. Zazwyczaj wszystkie białka wirusowe mogą, a nawet powinny pojawiać się równocześnie, aby doszło do samoskładania wirionów. W przypadku komórek człowieka tak nie jest. Istnieje wąska specjalizacja. To między innymi dzięki temu, pomimo że w każdej komórce jednego człowieka jest w zasadzie ten sam genom, mamy ponad 200 rodzajów komórek.

Podobnie jak IRES, peptydy (sekwencje) F2A czy P2A pozwalają wirusom na tworzenie wielu białek z jednej cząsteczki mRNA. Biotechnolodzy „plagiatują” te rozwiązania, aby również otrzymywać kilka białek z jednego fragmentu RNA. W tym przypadku rybosom po zakończeniu translacji jednego białka przeskakuje niejako do translacji następnego. IRES pozwala przyłączać się rybosomom w kilku miejscach mRNA i inicjować translację.

Wirusy regulują transkrypcję (przepisywanie DNA na RNA) za pomocą bardzo małych fragmentów regulacyjnych i w ten sposób wymuszają produkcję swojego RNA w komórkach ssaków. Te małe elementy regulacyjne z wirusów SV-40 czy CMV również zostały wykorzystane przez biotechnologów.

Oczywiście nie wyczerpuje to wszystkich elementów, które są plagiatowane z organizmów żywych przez biotechnologów.

Ponadto nie wszystkie rozwiązania pochodzą ze świata patogenów.

Przeciwciała wykorzystywane np. w diagnostyce normalnie służą do zwalczania patogenów. Biotechnolodzy wytwarzają je do: testów onkologicznych, wirusowych (kupujemy je w aptece), a nawet do testów ciążowych. To rozwiązanie układu odpornościowego różnych zwierząt. Ostatnio plagiatują je np. od alpak, ale również od rekinów, gdyż te mają dość sprytne (bardzo małe) przeciwciała.

Szczepionki to również zaprzęgnięcie do działań człowieka naturalnego systemu odpornościowego. Do ich tworzenia wykorzystywane są plazmidy, wektory wirusowe itp., opisane wcześniej. W naturze cena nabywania odporności jest bardzo wysoka. Często jest to kalectwo, niekiedy śmierć członków społeczności.

Przeciwnowotworowa terapia CAR-T jest wspólnym dziełem natury, biotechnologów i immunologów. Polega na połączeniu odpowiedzi limfocytów T i limfocytów B. Skradziono więc układowi odpornościowemu dwa rozwiązania i stworzono ich funkcyjną chimerę przy okazji tworzenia chimerowego białka. Powstała komórka, która nie wymaga prezentowania antygenu na cząsteczkach HLA (MHC), ale rozpoznająca go bezpośrednio. Pozwala to uniknąć niektórych działań, komórek nowotworowych, których one dokonują, aby „zmylić” układ odpornościowy. Litera C w nazwie CAR-T pochodzi właśnie od chimerowy (ang. chimeric).

CAR-T to przykład nowego świata biotechnologii, czyli biologii syntetycznej. W tym świecie biotechnolodzy tworzą nowe byty np. komórkowe, ale również kradną istniejące w przyrodzie elementy regulatorowe, białka itp. Również białka używane do edycji (naprawiania) genów w ramach metod nowocześniejszych niż CRISPR, takich jak prime editing, to białka chimerowe. Podbieranie elementów ze świata przyrody to pierwszy etap. Kolejny − to tworzenie z nich nowych, nieistniejących w przyrodzie bytów, takich jak komórki. Układy te są na tyle skomplikowane, że zaczyna się je porównywać do układów scalonych. Jest to dość luźna analogia, ponieważ komórka ma inną organizację przestrzenną niż układ scalony, ale obrazuje złożoność zmian, które biologia syntetyczna oferuje.

Na czym więc bardzo często polega biotechnologia czy biologia syntetyczna? Polega na podpatrywaniu natury i wykorzystywaniu jej wynalazków w innych celach niż te, dla których natura je wytworzyła. Sposoby korzystania z tych wytworów stają się coraz bardziej wyrafinowane. Najczęściej korzysta się z tego, co powstało w ramach ewolucyjnego wyścigu zbrojeń między bakteriofagami, a bakteriami, czy między naszym układem odpornościowym, a patogenami.

Glosariusz z wyjaśnieniami ( w celach popularyzacji)

PCR − łańcuchowa reakcja polimerazy, PCR (od ang. polymerase chain reaction)

Metoda powielania dwuniciowych fragmentów DNA. W trakcie reakcji odbywa się od 25 do 40 cykli, w czasie których dochodzi do kopiowania wybranego fragmentu DNA temperatura zmienia się od 45 do 95 stopni Celsjusza.

Odwrotna transkryptaza

Polimeraza DNA zależna od RNA, umożliwia syntezę nici DNA, wykorzystując jako matrycę RNA. Enzym ten w naturze kodowany jest w otwartych ramkach odczytu retrowirusów. Proces, w którym bierze udział ten enzym, nosi nazwę odwrotnej transkrypcji.

Metoda CRISPR/Cas (ang. Clustered Regularly−Interspaced Short Palindromic Repeats, pol. zgrupowane, regularnie rozproszone, krótkie, powtarzające się sekwencje palindromiczne)

Metoda ta pozwala na edycję genomu organizmu, który posiada odpowiedni system naprawy uszkodzeń DNA (Eukaryota). Mechanizm immunologiczny, z którego wywodzi się ta metoda: u bakterii odpowiedni RNA umożliwia niszczenie genomu fagów dzięki enzymom Cas. Enzymy Cas rozcinają DNA bakteriofagów rozpoznany przez to RNA. Biotechnolodzy wprowadzają transgen kodujący sgRNA, przypominający funkcyjnie RNA z bakteryjnego CRISRP razem z transgenem kodującym Cas (najczęściej Cas9), do komórek eukariotycznych. W tych komórkach, w przeciwieństwie do komórek prokariotycznych, może dochodzić do naprawy uszkodzeń DNA, powodowanych przez Cas9 naprowadzony przez sgRNA na odpowiednie miejsce DNA. sgRNA jest kodowany oddzielnym transgenem regulowanym przez promotor taki jak np. U6 (przyłącza on odpowiednią polimerazę). Sekwencja CRISPR w naturze zawiera fragmenty genomów bakteriofagów, które bakteria wcześniej zwalczyła. Dlatego CRISPR to część systemu ochrony przed bakteriofagami. Na tym przykładzie widać, jak bardzo biotechnolodzy zmieniają pierwotne zastosowanie jakiegoś rozwiązania działającego w naturze.

PE prime editing − zastosowanie edycji prime

Metoda wywodzi się z CRISPR/Cas. Wykorzystuje się w niej jednak białko chimerowe mutanta Cas9 (H840A) połączone z domeną odwrotnej transkryptazy. Powstało pięć (a nawet siedem, uwzględniając NPE i TPE) kolejnych odmian tej metody. Metoda pozwala na uniknięcie niektórych błędów pojawiających się w czasie edycji genomu metodą CRIPSR/Cas tzw. INDELS niechciane insercje, delecje.

Sekwencje 2A (F2A, P2A)

Sekwencje kodujące peptydy 2A pochodzą z genomów wirusowych. Umieszczenie ich pomiędzy sekwencjami DNA (potem RNA) kodującymi dwa różne białka powoduje, że rybosom w czasie translacji po ukończeniu syntezy pierwszego białka niejako przeskakuje do syntezy następnego białka. W ten sposób biotechnolodzy mogą umieścić w wektorach sekwencje kodujące więcej niż jedno białko − transgen(y)/otwarte ramki odczytu, których ekspresja jest regulowana przez jeden promotor.

IRES

Skrót pochodzi od ang. internal ribosome entry site. To element RNA pozwalający inicjować translację w sposób niezależny od czapeczki mRNA 5’. IRES pozwala rybosomom zacząć syntezę w kilku miejscach jednego fragmentu (jednej molekuły) mRNA. W przeciwieństwie do P2A, IRES umożliwia startowe przyłączenie rybosomu w miejscu, gdzie występuje sekwencja charakteryzująca ten fragment RNA. Peptyd 2A ujawnia swój efekt, kiedy dojdzie do translacji białka zakończonego tą sekwencją peptydową. Wtedy ten rybosom, który ten fragment zsyntetyzował, podejmie syntezę kolejnego białka dzięki temu, że molekuła RNA, na której się znajduje, zawiera sekwencję kodującą kolejny peptyd.

Promotor SV-40, promotor CMV

Rozpoczęcie transkrypcji (proces syntezy RNA na matrycy DNA) u ssaków jest precyzyjnie regulowane. Wirusy DNA wykorzystują krótkie sekwencje, aby ten proces uruchomić. Do tych fragmentów DNA przyłączają się czynniki transkrypcyjne, do których przyłącza się polimeraza RNA. Popularne wśród biotechnologów ze względu na niewielki rozmiar są fragmenty (sekwencje) pochodzące z wirusów SV-40 i CMV.

CAR-T

Skrót określający limfocyty T, do których metodami inżynierii genetycznej wprowadzono transgen kodujący białka CAR, ang. chimeric antigen receptor). Białko to składa się z kilku domen, które bez ingerencji człowieka należą do kilku białek. W typowym CAR jest to domena scFv (ang. single-chain variable fragment) i domeny należącej do białek, które w limfocytach T transdukują (przekazują) sygnał umożliwiający zabijanie np. komórek zainfekowanych przez wirusa (CD28, 4-1 BB, CD3z itp). Typowy scFv to fragment zmienny łańcucha lekkiego i ciężkiego konkretnego przeciwciała połączony odpowiednim peptydem/linkerem. Takie działanie pozwala komórkom CAR-T eliminować komórki nowotworowe, które wykazują ekspresję genu kodującego białko rozpoznawane przez domenę scFv. Same przeciwciała nie wykazują takiej skuteczności jak CAR-T. Analogicznie skrót CAR-M będzie oznaczał makrofagi, do których wprowadzono transgen kodujący białko CAR.

Transgen, gen, otwarta ramka odczytu (ORF)

Określenie transgen zostało zarezerwowane w tym tekście dla sekwencji kodujących umieszczanych w odpowiednich wektorach przez człowieka. Natomiast gen tutaj to fragment genomu kodujący białko czy RNA, który powstał w naturze. Autor zdaje sobie sprawę że gen bakteryjny w plazmidzie (nie chromosomie bakteryjnym) nie różni się zasadniczo od transgenu bakteryjnego. Zdecydowano się jednak na rozróżnienie gen vs. transgen, ponieważ większość fragmentów kodujących umieszczanych w wektorach np. wirusowych, a opisanych w tym tekście, odnosi się do genomu człowieka. W przypadku Eukaryota ekspresja genu jest regulowana za pomocą promotora, wzmacniaczy, wyciszaczy, a pierwotny transkrypt ulega splicingowi. Transgen takiego genu ma natomiast sztuczny względem oryginalnego promotor (patrz promotor CMV/SV40), co zmienia sposób regulacji jego ekspresji. Gen u eukariotów położony jest w konkretnym miejscu genomu, transgen tego genu wprowadzony do genomu ludzkiego za pomocą np. wektorów wirusowych zazwyczaj ma położenie przypadkowe. Te różnice powodują np., że edycja genomu (konkretnego genu) w celach terapeutycznych jest rozwiązaniem bardziej pożądanym niż tradycyjna terapia genowa oparta o transgen. Różnic między genem a transgenem jest więcej. Termin otwarta ramka odczytu (ang. open reading frame ORF), został tu użyty w odniesieniu do genomów wirusowych i transgenów. W przypadku genomu wirusa jedna molekuła mRNA dostarcza kilku otwartych ramek odczytu − fragment kwasu nukleinowego wirusa, na bazie którego powstaje jedna cząsteczka mRNA koduje kilka białek. W tekście użyto tych trzech określeń dla fragmentów kwasów nukleinowych kodujących głównie białka. Gen czy transgen nie musi jednak kodować białka. Jak wskazano, sgRNA używane w metodzie CRISPR, czy PE (pegRNA), jest również kodowane przez transgen. W wektorach przygotowywanych przez biologów również pojawiają się odcinki DNA kodujące mRNA dla kilku białek właśnie dzięki wykorzystaniu rozwiązań pochodzących z genomów wirusowych.

Fizjologia smaku, czyli dlaczego jedne rzeczy nam smakują, a inne nie (1)

Tomasz Kubowicz niedawno napisał o najbardziej gorzkiej substancji na świecie, za jaką uważa się Bitrex. Ale jak to jest, że czujemy gorzki smak? I dlaczego możemy czuć różne smaki? Postaram się to wyjaśnić we wpisie poniżej.

Dlaczego czujemy smak?

Za odczuwanie smaku odpowiadają kubki smakowe, które znajdują się głównie (chociaż nie tylko) w jamie ustnej. Każdy kubek smakowy zawiera wyspecjalizowane komórki, które po związaniu jakiejś substancji chemicznej (np. glukozy) uruchomiają przekazanie sygnału do mózgu. Jeżeli w ustach zmienia się stężenie soli lub jonów wodorowych, to zmiany te również są wykrywane przez odpowiednie komórki obecne w kubkach smakowych.

Kubki smakowe i brodawki smakowe

Kubki smakowe znajdują się w nabłonku wielu narządów, chociaż najwięcej ich wchodzi w skład brodawek znajdujących się na języku. Można powiedzieć, że język jest głównym organem wyczuwającym smak. Brodawki językowe sprawiają, że powierzchnia języka jest szorstka. Istnieją cztery rodzaje brodawek językowych: nitkowate, grzybopodobne, liściaste i obwodowe. Brodawek nitkowatych jest najwięcej; odpowiadają one za mechaniczną stymulację języka, przewodzą impulsy bólowe, ale nie zawierają kubków smakowych. Te są obecne w pozostałych trzech rodzajach brodawek.

Brodawki grzybopodobne znajdują się na grzbietowej części języka, a najwięcej ich jest na jego przedniej części. Jest ich w sumie około 200. Zawierają ok. 25% wszystkich kubków smakowych.

Brodawki liściaste znajdują się na bocznej stronie języka. Jest ich nie więcej niż 5 po każdej stronie. Zawierają ok. wszystkich 25% wszystkich kubków smakowych.

Brodawki obwodowe znajdują się na tylnej części języka. Jest ich 8 – 12. Zawierają ok. 50% wszystkich kubków smakowych.

Każda brodawka może zawierać od kilku do ponad 100 kubków smakowych. W sumie kubków smakowych mamy ok. 4000 (na pewno nie więcej niż 8000). I to właśnie one powodują, że czujemy smak tego, co jemy (Ryc. 1).

Ryc. 1. Rozmieszczenie brodawek na języku oraz schemat budowy kubka smakowego. Według: Jaime-Lara R.B. et al., Physiol. Rev. 2023, 103: 855–918. Licencja CC BY 4.0.

Receptory smakowe

Każdy kubek smakowy zawiera 150 – 300 komórek receptorowych, a każda komórka receptorowa zawiera tylko jeden typ receptora. Receptorami mogą być kanały jonowe lub receptory związane z białkiem G (G protein-coupled receptors, GPCR). Te ostatnie to duża rodzina białek transmembranowych (czyli znajdujących się w błonie komórkowej). Białka te po związaniu zewnątrzkomórkowego liganda (czyli czynnika, który jest swoiście rozpoznawany) powodują aktywację białka G, polegającą na zastąpieniu GDP przez GTP (odpowiednio, gunazyno-5’-difosforan i guanozyno-5’-trifosforan). Tak zaktywowane białko G może aktywować inne białka, w tym cyklazę guanylową, co powoduje przesłanie sygnału do komórki, co z kolei skutkuje zmianami w metabolizmie. Jest wiele receptorów związanych z białkiem G, należą do nich m.in. receptory dla adrenaliny, serotoniny czy opioidów. Większość receptorów smakowych też należy do tej rodziny.

Drugim rodzajem receptorów smakowych są kanały jonowe. Są to również białka transmembranowe, a ich rolą jest przenoszenie jonów przez błonę komórkową. 

Ile smaków możemy wyczuć? Do niedawna uważano, że podstawowych smaków jest pięć: słony, słodki, gorzki, kwaśny i umami (z japońskiego „smakowity”). Dziś uważa się, że jest jeszcze szósty smak, który można nazwać tłustym, czyli związanym z obecnością tłuszczów. Każdy z tych smaków rozpoznawany jest przez określony typ komórki, która ma na powierzchni odpowiednie receptory. Ponieważ smaków jest sześć, to jest również sześć typów komórek receptorowych. Samych receptorów jest jednak więcej, bo o ile np. smak kwaśny jest rozpoznawany tylko przez jeden typ receptora, to smak gorzki przez 25 rodzajów (o czym piszę w dalszej części).

Receptory te są pokazane na Ryc. 2. Białka typu GPCR odpowiadają za wyczuwanie smaków: słodkiego, gorzkiego, umami i tłustego (częściowo, bo smak tłusty ma jeszcze drugi rodzaj receptora, którym jest kanał jonowy). Kanały jonowe odpowiadają za wyczuwanie smaku kwaśnego, słonego i tłustego (drugi receptor).

Poniżej krótka charakterystyka receptorów dla poszczególnych smaków.

Smak kwaśny

Kanał jonowy Otop1 (otopterin 1) jest białkiem, które przenosi jony wodorowe przez błonę komórkową. Jeżeli w ustach mamy dużo jonów wodorowych (czyli pH jest niskie), białko Otop1 przepuszcza je do wnętrza komórki, co powoduje wysłanie sygnału do mózgu, że mamy w ustach coś kwaśnego. Tu ciekawostka: każdy chemik zauważy, że o ile możemy wykrywać kwaśny smak powodowany przez jony wodorowe (H+), to nie mamy receptora dla jonów hydroksylowych (OH). Dlatego substancje o zasadowym pH (np. mydło) wydają się nam obrzydliwe.

Smak słony

Kanały jonowe o nazwach ENaC i TRPV1 przenoszą jony sodowe przez błonę komórkową i odpowiadają za wyczuwanie smaku słonego. Ten drugi jest również receptorem dla kapsaicyny, czyli piekącej substancji zawartej w papryczkach chili. Kapsaicyna aktywuje więc po części receptory smaku słonego, co pozwala na zastąpienie szkodliwej w nadmiarze soli przez ostre przyprawy (uwaga dla kucharzy).

Smak tłusty

Białko o nazwie CD36 należące do rodziny kanałów jonowych przenosi kwasy tłuszczowe do wnętrza komórki i wspólnie z białkiem GPR120 (które należy do rodziny GPCR) odpowiada za wyczuwanie tłuszczów w pokarmie. Ściśle rzecz biorąc, nie wyczuwamy tłuszczów, ale wchodzące w ich skład kwasy tłuszczowe. Reakcję hydrolizy tłuszczów do glicerolu i kwasów tłuszczowych przeprowadzają obecne w ślinie enzymy z rodziny lipaz.

Smak słodki i umami

Smak słodki znamy wszyscy, ale czym jest smak umami? Został odkryty przez japońskiego badacza Kikunae Ikedę, który w 1908 r. zauważył, że smak bulionu z wodorostów różni się od podstawowych czterech smaków. Nazwał go „umami”, co po japońsku znaczy „esencja pyszności”. Przeprowadzone przez niego analizy chemiczne wykazały, że za ten smak odpowiada kwas glutaminowy, który jest jednym z podstawowych aminokwasów. Dziś jego sól sodowa (lub potasowa albo magnezowa) jest stosowana powszechnie jako wzmacniacz smaku i możemy ją znaleźć w większości przetworzonych produktów spożywczych (kody E620-E625).

Za wykrywanie smaku słodkiego i umami odpowiadają kompleksy złożone z dwóch białek. W ich skład wchodzi zawsze białko T1R3 oraz białko T1R2 (dla smaku słodkiego) lub T1R1 (dla umami). Tylko obecność obu białek jednocześnie powoduje, że możemy wyczuć te smaki. U kotów miała miejsce mutacja w genie kodującym receptor T1R2; białko kodowane przez taki gen jest defektywne (brakuje długiego fragmentu) i nie może dalej przekazywać sygnału. Dlatego koty nie lubią słodyczy. Przypuszczalnie smakują im trochę tak, jak nam mydło.

Ryc. 2. Receptory smaku i niektóre cząsteczki, które je aktywują. Według: Jaime-Lara R.B. et al., Physiol. Rev. 2023, 103: 855–918. Licencja CC BY 4.0.

Smak gorzki, czyli jak uniknąć trucizn

Wśród receptorów smaku najwięcej jest receptorów smaku gorzkiego: jest ich cała rodzina o nazwie T2R (używa się też nazwy TAS2R). U człowieka znanych jest 25 genów kodujących funkcjonalne receptory smaku gorzkiego, ale płazy mają ich ok. 60, a gady 40. U ssaków bywa różnie, najwięcej mają ich zwierzęta wszystkożerne i roślinożerne (np. krowa 22, mysz 36), a najmniej mięsożerne (np. fretka 12, niedźwiedź polarny 14, pies 16). Dlaczego receptorów dla gorzkiego smaku jest aż tyle? Chronią przed zatruciem, ponieważ większość trucizn ma gorzki smak. Im więcej receptorów i im bardziej są one zróżnicowane, tym większa szansa, że wykryjemy dany rodzaj trucizny, bo dana substancja może aktywować tylko jeden rodzaj receptora. A jakie organizmy są największym producentem trucizn? Rośliny, które w ten sposób bronią się przed zjadaniem. Dlatego zwierzęta roślinożerne mają najwięcej rodzajów receptorów gorzkiego smaku.

Fenylotiokarbamid jako test na gorzki smak

Przykładem gorzkiej substancji wykrywanej przez jeden rodzaj receptora jest fenylotiokarbamid (PTC). W 1931 r. Arthur Fox, chemik z firmy Du Pont, przypadkowo wypuścił w powietrze chmurę kryształków tego związku i zauważył, że o ile jego koledzy uskarżali się na jego gorzki smak, to on sam nie czuł nic. Szersze badania wykazały, że niezdolność do wykrywania gorzkiego smaku PTC jest cechą recesywną (to znaczy, trzeba mieć dwa takie allele żeby taka cecha miała miejsce). Ok. 30% ludzi ma taką cechę (angielskie określenie: „non-taster”), czyli nie czuje gorzkiego smaku PTC. Przyczyną jest mutacja w genie T2R38 (jednym z genów kodujących receptory smaku gorzkiego), która powoduje, że białko jest nieaktywne i po związaniu cząsteczki nie może przesyłać sygnału do mózgu. Osoby, które mają taką mutacje w obu allelach tego genu, nie czują też limoniny, która nadaje gorzki smak cytrusom (najwięcej jest jej w grejpfrutach). Są też udokumentowane związki między takimi mutacjami i zamiłowaniem do niektórych warzyw o gorzkim smaku, ale o tym napiszę w następnym odcinku (Ryc. 3).

Ryc. 3. Fenylotiokarbamid (PTC). Źródło: Wikipedia, domena publiczna.

Trucizny i receptory dla nich

Jakie substancje mają gorzki smak i jakie receptory je rozpoznają? Chinina, niezwykle gorzka substancja (nieszkodliwa w niewielkich, ale trująca w dużych ilościach) jest rozpoznawana przez białka T2R39 i T2R46. Amigdalina, trujący związek obecny m.in. w pestkach brzoskwiń i morel, jest rozpoznawana przez białko T2R16. Pisał o niej Lucas Bergovsky.

Strychnina, silnie trujący związek o bardzo gorzkim smaku, jest rozpoznawana przez receptor T2R46. Ale np. silnie trująca solanina z ziemniaka nie jest rozpoznawana przez żaden z ludzkich receptorów, i w związku z tym w zasadzie nie ma smaku. Zatrucia solaniną zdarzają jednak się rzadko, bo bulwy ziemniaka przeważnie jej nie zawierają (pisał o tym Mirosław Dworniczak).

Wśród roślin uprawianych przez człowieka na duża skalę jedna może być naprawdę niebezpieczna: jest to maniok jadalny (Manihot esculenta). Pochodzi z Brazylii, a dziś uprawiany jest powszechnie w Afryce i spożywany w postaci mąki zwanej tapioką lub kassawą (Ryc. 4).

Ryc. 4. Bulwy manioku. Źródło: Wikipedia, David Monniaux. GNU Free Documentation License.

Maniok zawiera dwa gorzkie alkaloidy o nazwach linamarina i lotaustralina, które zapewniają ochronę wobec szkodników. Podobnie jak w amigdalinie są w niej grupy nitrylowe, które mogą uwalniać cyjanowodór. Związków tych można się pozbyć w wyniku gotowania lub pieczenia, a także po 24-godzinnym wymoczeniu w  wodzie. Pomimo to, zatrucie alkaloidami zawartymi w manioku zdarza się dość często i powoduje chorobę o nazwie konzo (w Afryce co najmniej 100 000 przypadków rocznie). Objawy to uszkodzenie nerwów ruchowych (w języku Yaka konzo to „związane nogi”) i postępujący paraliż. Wiele zależy tu od indywidualnej zdolności wyczuwania gorzkiego smaku: jedne osoby czują go lepiej, a inne gorzej, i to właśnie one bardziej narażone są na zatrucie (Ryc. 5).

Ryc. 5. Pacjenci z objawami konzo w Demokratycznej Republice Kongo (A) i zawartość trujących glikozydów w manioku jako funkcja zdolności do wyczuwania gorzkiego smaku przez różne osoby (B). Źródło: Wooding S.P. et al., Evol. Medicine Pub. Health 2021, 9: 431-447. Licencja CC BY 4.0.

I tu przechodzimy do indywidualnych zdolności percepcji smakowych, czyli do genetyki smaku. Ale o tym, a także o rzekomej „mapie języka”, opowiem w następnych odcinkach.

Literatura dodatkowa

Molekularne podstawy smaku:

https://doi.org/10.1152/physrev.00061.2021

Genetyczne różnice w wyczuwaniu smaku:

https://doi.org/10.1146/annurev-food-032519-051653

Słodki smak u kotów

https://doi.org/10.1093/jn/136.7.1932S

Gorzki smak i jego znaczenie

https://doi.org/10.1093/emph/eoab031

Na tropie przestępców, czyli analiza DNA w kryminalistyce (1)

Zbrodnia doskonała to taka, w której nie pozostawiono śladów. Rzecz w tym, że zawsze jakieś ślady zostają. Zwłaszcza obecnie, dzięki badaniom DNA, wystarczy kilka komórek, żeby można było określić tzw. profil DNA i za jego pomocą zidentyfikować osobę, do której te komórki należały. Takie profile DNA umieszcza się w bazach danych. Każdy kraj ma takie bazy i korzysta z nich w służbie egzekwowania prawa. Co zawierają te bazy? Kto pierwszy wpadł na pomysł, żeby wykorzystać DNA w kryminalistyce i medycynie sądowej?

Sir Alec Jeffreys

Pionierem zastosowania analizy DNA w kryminalistyce był brytyjski genetyk Alec Jeffrey z uniwersytetu w Leicester. W 1984 r., badając DNA członków swojego zespołu, zauważył istnienie regionów znacznie różniących się sekwencjami. Nazwał je regionami minisatelitarnymi, a publikacja „Charakterystyczne dla każdej osoby „odciski palca” ludzkiego DNA” (Individual-specific `fingerprints’ of human DNA) ukazała się w Nature w 1985 r. Opisał w niej regiony DNA, które mogą służyć jako „genetyczne odciski palca”. W tym samym roku metoda ta umożliwiła ustalenie rodziny kilkuletniego chłopca, a rok później przyczyniła się do identyfikacji sprawcę morderstwa w Narborough, Leicestershire. W 1992 r. Alec Jeffreys pomógł też niemieckiej prokuraturze w identyfikacji zwłok dr. Jozefa Mengele, który utonął w Brazylii w 1979 r. Za swoje odkrycia został uhoronowany m.in. nagrodą Alberta Laskera w 2006 r. (Ryc. 1).

Ryc. 1. Sir Alec Jeffreys. Źródło: PLoS Genetics, licencja CC BY 2.5.

Za sprawą Aleca Jeffreysa Wielka Brytania stała się pierwszym krajem, w którym zastosowano analizę DNA w kryminalistyce i dochodzeniu ojcostwa. Na podstawie jego odkryć stworzono Narodową Bazę Danych Zjednoczonego Królestwa (United Kingdom National DNA Database), która jest zarządzana przez Ministerstwo Spraw Wewnętrznych (Home Office). Sam Alec Jeffreys od początku uważał, że rząd nie powinien mieć dostępu do tych danych, i taka baza powinna być utrzymywana przez niezależną instytucję.

Regiony minisatelitarne czyli STR

Ludzki genom liczy ponad 3 miliardy par zasad, i różnice sekwencji między ludźmi są niewielkie. Ale są wyjątki: odkryte przez Aleca Jeffresa regiony minisatelitarne, zwane też krótkimi powtórzeniami tandemowymi (short tandem repeats, STR), są sekwencjami DNA zawierające powtórzenia o długości 2 – 7 par zasad. Liczba powtórzeń może być inna u każdego człowieka. Takie powtórzone sekwensje stanowią 3% ludzkiego genomu, a zdecydowana większość (92%) jest w regionach niekodujących, czyli takich, które nie kodują białek ani RNA. Do niedawna uważano, że jest to tzw. śmieciowe DNA, ale coraz więcej dowodów przemawia za tym, że mogą pełnić różne funkcje regulatorowe.

Regiony zawierające STR mutują o wiele częściej niż inne fragmenty naszego genomu. Skutkiem jest ich duże zróżnicowanie: wiele regionów STR zawiera różną liczbę powtórzeń. Wystarczy wybrać kilka – kilkanaście regionów STR o szczególnie dużym zróżnicowaniu i użyć ich jako „metek” (można je porównać do kodów kreskowych), które są unikalne dla każdego człowieka.

CODIS i ESS

CODIS, czyli Combined DNA Index System, jest amerykańską bazą danych zawierającą dane dotyczące ludzkiego DNA, stworzoną w 1990 r. i utrzymywaną przez FBI. Podobnymi bazami danych dysponują policje w innych krajach. W Europie bazy te tworzy się w ramach zbliżonego do CODIS protokołu European Standard Set of STR (ESS). Przeważnie bazy te zawierają cztery oddzielne zbiory: skazanych za przestępstwa, aresztowanych, osób zaginionych oraz śladów DNA z miejsca przestępstwa. W 2020 r. bazy danych CODIS zawierały profile DNA 14 milionów przestępców, 4 milionów osób aresztowanych i milion śladów z miejsca przestępstwa. W Europie największą bazą danych w stosunku do liczby obywateli dysponuje Wielka Brytania. W 2020 r. liczyła ona 6,6 miliona profili DNA, czyli zawierała profil DNA co dziesiątego obywatela.

Bazy danych CODIS/ESS zawierają od 13 do 16 loci genetycznych (czyli określonych lokalizacji w chromosomach). Wszystkie te loci to STR zawierające powtórzenia o długości 4 par zasad (Ryc. 2).

Ryc. 2. Podstawowe 13 loci krótkich powtórzonych fragmentów (STR) stosowane w bazach CODIS i ESS. TPOX, FGA i VWA to geny kodujące odpowiednio peroksydazę tarczycową, fibrynogen A i czynnik von Willebranda. AMEL to gen kodujący emalogeninę, który służy do określania płci. Pozostałe to regiony zawierające STR na różnych chromosomach (np. D16S539 to region STR nr 539 na chromosomie 16). Źródło: NIST, domena publiczna.

Metody analizy STR

Sekwencje STR można łatwo analizować za pomocą łańcuchowej reakcji polimerazy (PCR, pisał o tym Piotr Gąsiorowski). Przypuśćmy, że analizujemy STR numer DS7820, który może zawierać od 4 do 15 powtórzeń. Każdy z nas ma dwa allele takiego STR, odziedziczone po każdym z rodziców. Przypuśćmy, że w naszym przypadku powtórzeń jest 4 i 8,  więc po reakcji PCR otrzymamy dwa prążki, odpowiadające 4 i 8 powtórzeniom. Kto inny może mieć np. 5 i 11 powtórzeń, a jeszcze kto inny 6 i 6 (ponieważ oba allele mają 6 powtórzeń) (Ryc. 3).

Ryc. 3. Analiza krótkich powtórzonych fragmentów (STR) za pomocą PCR. Źródło:  Sitnik R. i współpr., Einstein 2006, 4: 127-131. Licencja CC BY 4.0.

Amelogenina mówi nam o płci

Ciekawostką jest gen AMEL, którego polimorfizm wykorzystuje się do określania płci. Gen ten koduje białko o nazwie amelogenina, która odgrywa ważną rolę w syntezie szkliwa zębów. Białko to (wraz z innymi białkami tej rodziny) tworzy nanocząstki zawierające hydroksyapatyt (Ca5(PO4)3(OH)), co powoduje inicjację i wzrost kryształów hydroksyapatytów w czasie mineralizacji szkliwa.

Człowiek ma dwie kopie genu AMEL zlokalizowane na chromosomach X i Y. Te dwie formy genu noszą nazwę odpowiednio AMELX i AMELY. Sekwencje obu genów są bardzo podobne, ale pierwszy intron (czyli ta część genu, która nie koduje białka) w genie AMELX (chromosom X) jest o 6 par zasad krótszy, niż pierwszy intron genu AMELY. Kobiety mają dwa chromosomy X, a mężczyźni jeden chromosom X i jeden chromosom Y. Jeżeli zrobimy reakcję PCR pierwszego intronu genu AMEL, to w przypadku mężczyzny otrzymamy dwa prążki (jeden krótszy o 6 par zasad), a w przypadku kobiety będzie jeden (dłuższy) prążek.

Obecność mutacji w genie AMEL powoduje jednak, że metoda ta nie określa płci ze 100% dokładnością. Zdarzają się mężczyźni z delecją fragmentów pierwszego intronu, co powoduje, że reakcja PCR pokazuje tylko produkt genu z chromosomu X. Dlatego w niejednoznacznych przypadkach stosuje się dodatkowo analizę genu SRY, który koduje białko TDF (testis-determining factor). Jest ono czynnikiem transkrypcyjnym odpowiadającym za powstawanie jąder w okresie życia płodowego. Gen SRY znajduje się na chromosomie Y, który jest obecny tylko u mężczyzn.

Statystyka

Jeżeli uda się określić STR w13 loci, to prawdopodobieństwo znalezienia niespokrewnionej osobie o takim samym układzie STR wynosi 1 na bilion, czyli 10-12. Na świecie żyje ok. 8 miliardów ludzi, czyli 8 x 109. Ziemia musiałoby liczyć 100 razy więcej ludzi, żeby można było natrafić na obcą osobę z takim samym układem STR.

Jeżeli DNA jest dobrze zachowane, to udaje się określić wszystkie STR z „podstawowego” zestawu. Jeżeli DNA jest zdegradowane, to można zastosować inne, dodatkowe STR. Wtedy wszystko zależy od tego, czy w bazie danych jest odpowiednie DNA (chyba, że mamy podejrzanego) (Ryc. 4).

Ryc. 4. Analiza STR z DNA znalezionego na miejscu przestępstwa (włamanie). U podejrzanego 1 tylko jeden STR odpowiada śladowi z miejscu przestępstwa, u podejrzanego 2 wszystkie. Wniosek: to podejrzany 2 jest sprawcą. Źródło: El-Alfy SH i współpr., Eur. J. Gen. Eng. Biotechnol. 2012, 10: 101-112. Licencja CC BY 3.0.

Problemy etyczne i prawne

Pobieranie i przechowywanie próbek DNA stanowi problem etyczny i prawny. Jeżeli czyjś profil DNA jest w bazie danych, to może być sprawdzony w wielu sprawach karnych. Czy jeżeli ktoś został aresztowany za jakiekolwiek wykroczenie, to jego próbka DNA może być dowodem w innej sprawie?

Sprawa S and Marper v Zjednoczone Królestwo

Michael Marper i osoba określana jako Mr. S zostali aresztowani w 2001 r. w Sheffield (Wielka Brytania) za usiłowanie napadu rabunkowego. Zgodnie z prawem Wielkiej Brytanii, pobrano od nich próbki DNA. Uwolniono ich z zarzutów, ale próbki DNA pozostały w bazie danych. Michael Marper i Mr S zwrócili się do sądu o zniszczenie próbek, argumentując, że nie zostali oskarżeni o żadne przestępstwo, są niewinni, a więc ich DNA nie powinno się znajdować w bazie danych razem z DNA przestępców . Kiedy sąd nie przychylił się do ich prośby, odwołali się do Europejskiego Trybunału Praw Człowieka w Strasburgu. Ten w 2008 r jednogłośnie orzekł (orzeczenie ECHR 1581), że pobieranie próbek DNA od osób, które nie są formalnie oskarżone, narusza Artykuł 8 Europejskiej Konwencji Praw Człowieka (o poszanowaniu prawa do życia prywatnego i rodzinnego) i nakazał zniszczenie próbek, a także wypłatę 42 000 Euro odszkodowania. W odpowiedzi brytyjskie Ministerstwo Spraw Wewnętrznych zaproponowało, żeby pobierać próbki DNA od wszystkich aresztowanych, ale przechowywać je tylko w przypadku skazania (pozostałe mają być niszczone). W 2012 r. Izba Gmin przegłosowała Ustawę o Ochronie Wolności (Protection of Freedoms Act of 2012), zgodnie z którą próbki DNA pobrane od osób aresztowanych mają być niszczone w przypadku uniewinnienia.

Sprawa Maryland v King

Alonzo King został aresztowany w Salisbury, Maryland, w 2009 r. za grożenie pistoletem grupie osób. Zgodnie z prawem stanu Maryland (DNA Collection Act), pobrano od niego próbkę DNA. Analiza wykazała, że taki sam profil DNA miał nieustalony sprawca gwałtu w 2003 r. Alonzo King został oskarżony o gwałt i skazany na dożywotnie więzienie. Odwołał się jednak od wyroku, argumentując, że DNA pobrane w jednej sprawie nie może być dowodem w innej. Narusza to Czwartą Poprawkę do Konstytucji Stanów Zjednoczonych, która chroni obywateli przed „bezpodstawnymi przeszukaniami i zatrzymaniami” (unreasonable searches and seizures). Po licznych odwołaniach, w 2013 r. Sąd Najwyższy Stanów Zjednoczonych wydał orzeczenie w tej sprawie (Maryland v King, 569 U.S. 435, 2013). Większością 5:4 orzekł, że stan Maryland miał prawo pobrać próbkę DNA, i że ta próbka mogła służyć jako dowód w innej sprawie. Sędzia Joseph Kennedy napisał opinię większości, argumentując, że pobranie DNA nie narusza Czwartej Poprawki, bo służy bezpieczeństwu stanu Maryland, i jest w zasadzie rozwinięciem analizy odcisków palców, którą stosuje się od lat. Sędzia Antonin Scalia w zdaniu odrębnym napisał, że Czwarta Poprawka wyraźnie zabrania policji przeszukiwania podejrzanego w celu znalezienia dowodów na przestępstwo inne niż te, za które został aresztowany. Na tej zasadzie policja mogłaby przeszukiwać domy osób zatrzymanych za przekroczenie prędkości w poszukiwaniu dowodów na handel narkotykami.

Zasady pobierania próbek DNA w USA są różne: w 17 stanach DNA pobiera się od każdego aresztowanego, w 13 od aresztowanych tylko za niektóre przestępstwa, a w 17 wyłącznie od skazanych. Zgodnie z orzeczeniem Sądu Najwyższego, wszystkie te próbki mogą służyć za dowody w każdej sprawie karnej.

Polskie prawo karne

W Polsce profile DNA mogą służyć jako dowody w sprawach karnych i cywilnych. Baza danych DNA jest prowadzona przez Komendanta Głównego Policji. Próbki DNA pobiera się od osób oskarżonych (Art. 74 Kodeksu Postępowania Karnego). Próbki DNA przechowywane są przez 20 lat. W przypadku niektórych przestępstw, próbki DNA przechowuje się przez 35 lat. Należą do nich: przestępstwa przeciw pokojowi i ludzkości, Rzeczpospolitej, obronności, życiu i zdrowiu, bezpieczeństwu powszechnemu (Rozdziały XVI-XX Kodeksu Karnego), przestępstwa przeciw wolności seksualnej i obyczajowości (Rozdział XXV Kodeksu Karnego), przestępstwa przeciw mieniu (Rozdział XXXV Kodeksu Karnego), a także, co ciekawe, kierowanie pojazdem mechanicznym bez odpowiednich uprawnień (Art. 94 § 1 Kodeksu Karnego).

Czy większa liczba profili DNA to większa szansa znalezienia sprawcy?

Podejście do zbierania profili DNA jest różne w różnych krajach. Można je podzielić na restrykcyjne i ekspansywne. Restrykcyjne polega na pobieraniu DNA tylko od podejrzanych o poważne przestępstwa, jak morderstwo czy gwałt. Do krajów tych należą m.in. Belgia, Niemcy, Hiszpania i Polska. Ekspansywne podejście polega na pobieraniu DNA od wszystkich podejrzanych, nawet zatrzymanych za niegroźne przestępstwa. Takie kraje to cytowana Wielka Brytania, a także Finlandia, Litwa, Łotwa i Słowacja. Dlatego bazy DNA w krajach „restrykcyjnych” zawierają mało profili w stosunku do całej populacji (od 0,06% w Rumunii do 0,91%% w Niemczech).  Bazy w krajach „ekspansywnych” są większe: od 1,87% w Austrii do 10,3% w Anglii i Walii (w Szkocji 4,7%). Niekoniecznie przekłada się to jednak na sprawność systemu, który można określić jako stosunek liczby śladów, których pochodzenie udało się określić, do liczby profili DNA w bazie danych. W „restrykcyjnych” krajach sprawność wynosi od 0,001% w Rumunii do 0,3% w Szwecji. W „ekspansywnych” krajach jest to 0,02% w Łotwie i 0,31% w Wielkiej Brytanii. W Polsce w r. 2016 baza profili DNA zawierała dane 28 376 osób (0,07% obywateli). Liczba śladów wynosiła 2483, i w bazie znaleziono 147 sprawców, co oznacza, że sprawność wynosiła 0,0056%.

Przyszłość

Jak widać, profile DNA mogą służyć do ustalenia sprawcy przestępstwa, ale szanse sukcesu nie są duże. Wynika to z niewielkiej liczby profili DNA w bazach danych. Jeżeli sprawca nie popełnił uprzednio żadnego przestępstwa, a w każdym razie nie był aresztowany, to raczej nie figuruje w bazie danych i trudno będzie go namierzyć. I tu wchodzi w grę określanie fenotypu na podstawie DNA (forensic DNA phenotyping), które (kto wie?) stanowi przyszłość kryminalistyki. Czy mając próbkę DNA, możemy przewidzieć wygląd danej osoby? O tym napiszę w następnym odcinku.

Literatura dodatkowa

Regiony minisatelitarne w ludzkim genomie

https://www.nature.com/articles/314067a0

Zastosowanie regionów minisatelitarnych w kryminalistyce

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444828/

Bazy profili genetycznych w różnych krajach europejskich

https://lsspjournal.biomedcentral.com/articles/10.1186/2195-7819-9-12