Azot jako gaz życia, czyli co może dać symbioza. Część 2: Rośliny i ich mali przyjaciele

Inne wpisy z tej serii:
Część 1: Porosty
Część 3: I znów endosymbioza

Patrz też:
Organizmy mało znane: Porosty
Gwiezdna galareta i kamień filozoficzny

Parzepliny, sagowce i mszaki, czyli odcienie symbiozy

Jak wspomniałem w poprzednim wpisie, współczesne cyjanobakterie (najczęściej z wszędobylskiego rodzaju Nostoc) chętnie wchodzą w związki symbiotyczne z grzybami porostowymi (dotyczy to grubo powyżej tysiąca opisanych gatunków). Z jakichś powodów taka symbioza skrajnie rzadko występuje u roślin naczyniowych (tracheofitów). Wśród okrytonasiennych (Angiospermae), dominujących na lądach od późnej kredy, wyjątkiem jest parzeplin (Gunnera), rodzaj o historii sięgającej „ery dinozaurów” (ok. 115 mln lat temu). Parzeplin wywodzi się się z kontynentów półkuli południowej, ale jest chętnie uprawiany także w Europie dla swoich ogromnych, dekoracyjnych liści (patrz ryc. 1). U nasady ogonków tych liści znajdują się gruczoły, przez które cyjanobakterie (zwykle Nostoc punctiforme) przenikają do tkanek parzeplinu i sadowią się się w ścianach komórkowych. Nie naruszają leżącej głębiej błony komórkowej, czyli nie stają się symbiontami wewnątrzkomórkowymi w ścisłym sensie, ale mają kontakt z błoną, przez którą roślina i sinica mogą wymieniać metabolity. Cyjanobakteria oferuje przyswajalny azot, a w zamian prosi o produkty fotosyntezy, której sama nie może uprawiać na dostateczną skalę, bo pozbawiona jest dostępu światła.1 W niciach komórek symbiotycznej cyjanobakterii przeważają heterocysty wiążące azot zamiast zwykłych komórek fotosyntetyzujących.

Ryc. 1.

Wśród nagonasiennych (Gymnospermae) bliskie stosunki z cyjanobakteriami nawiązały jedynie sagowce (Cycadales). Cyjanobakterie, między innymi z rodzajów Desmonostoc i Nostoc, żyją w tzw. korzeniach koralkowych sagowców, rozrastających się tuż pod powierzchnią ziemi. Wymiana usług jest podobna jak w przypadku parzeplinów: gospodarz musi skompensować sinicy brak możliwości fotosyntezy, zaopatrując ją w odżywcze związki węgla (zwłaszcza cukry). Poza wiązaniem azotu atmosferycznego (dzięki czemu sagowcom nie przeszkadza nawet skrajnie jałowa gleba), symbiotyczne bakterie dostarczają swojemu gospodarzowi także interesujących metabolitów, np. BMAA (3-metyloamino-L-alaniny), neurotoksyny pobieranej od sinic i gromadzącej się w nasionach sagowca. Sagowce pojawiły się w permie, szczególny rozkwit przeżyły w mezozoiku i nadal dobrze sobie radzą w ciepłych strefach klimatycznych (patrz ryc. 2). Azotodajne sinice zapewne przyczyniły się do ich sukcesu ewolucyjnego.

Ryc. 2.

Symbioza z sinicami jest o wiele częstsza u nienaczyniowych roślin lądowych, czyli mszaków. Uprawiają ją wszystkie glewiki (Anthocerotophyta) i niektóre wątrobowce, np. otruszyn (Blasia); hodują one cyjanobakterie w przestworach wewnątrz plechy, wypełnionych śluzem. Także w tym przypadku sinica wymaga dokarmiania przez gospodarza, bo jej aktywność fotosyntetyczna spada prawie do zera. Z kolei mchy z rodzaju Sphagnum (torfowce) oferują sinicom gościnę w tzw. komórkach wodonośnych (hialinowych) – dużych, martwych, bezbarwnych, o porowatych ścianach. Mniej wiadomo o szczegółach współpracy sinic z mchami z rodziny gajnikowatych (Hylocomiaceae), takimi jak rokietnik pospolity (Pleurozium schreberi). Sinice nie wnikają do wnętrza rośliny, tylko kolonizują jej powierzchnię, dzięki czemu mogą bez przeszkód prowadzić fotosyntezę. Badania wskazują, że obecność sinic wzbogaca tkanki mchu w azot, a mech zaopatruje swoich małych przyjaciół m.in. w związki siarki (sulfoniany).2 Podobnie jak parzepliny i sagowce (a także grzyby porostowe rozmnażające się płciowo) mszaki w każdym pokoleniu muszą pozyskiwać symbionta na nowo, pozwalając się zainfekować swobodnie żyjącym cyjanobakteriom.

Na scenę wpływa azolla

Przyjrzyjmy się teraz jeszcze innej roślinie: azolli (Azolla). Jest to maleńka i na oko niepozorna słodkowodna paproć pływająca. Na pierwszy rzut oka przypomina rzęsę wodną (pomijając kolor często czerwonawy, który azolla zawdzięcza antocyjanom). Jeden z jej gatunków, A. filiculoides (tradycyjnie, choć nie całkiem poprawnie nazywana azollą karolińską) występuje w Polsce jako roślina inwazyjna zawleczona z Nowego Świata. Choć jest to w zasadzie roślina tropikalna, potrafi się przystosować do chłodnych stref klimatycznych. Jeśli przypadkiem trafi na korzystne warunki do rozrostu, może utworzyć kożuch o grubości kilku centymetrów, pokrywający szczelnie całą powierzchnię zbiornika wodnego (ryc. 3). Nie trzeba tłumaczyć, że inni mieszkańcy akwenu nie mają wtedy powodu do radości.

Powiedzieć, że azolla rośnie szybko, to nic nie powiedzieć. Jej biomasa może się podwoić w ciągu 2–5 dni i przyrasta wykładniczo, dopóki nie napotka na jakąś barierę wzrostu. Najczęściej jest to ograniczony dostęp do zasobów fosforu, niezbędnego składnika kwasów nukleinowych, ATP czy fosfolipidów. Dlatego intensywne zakwity azolli zdarzają się tam, gdzie fosforu nie brakuje – często dlatego, że dostarczają go ścieki zrzucane przez ludzi. Azolla nie potrzebuje natomiast nawożenia azotem, bo przyswaja go sobie wprost z atmosfery.

Ryc. 3.

W późnej kredzie, około 80 mln lat temu, rodzaj Azolla zaczął się szerzyć na wszystkich kontynentach. Już wtedy azolle żyły w tych samych środowiskach, które preferują dzisiaj – w wodach stojących lub wolno płynących. Wszystko też wskazuje na to, że już wówczas współpracowały z cyjanobakterią Trichormus azollae.3 Ich symbioza stała się tak ścisła, że sinica całkowicie uzależniła się od gospodarza. Straciła część genów potrzebnych do samodzielnej egzystencji, co jest ewenementem wśród symbiotycznych cyjanobakterii (ich genomy są z reguły duże jak na bakterie; genom N. punctiforme jest wręcz rekordowo wielki). Jak zatem nowe pokolenia azolli pozyskują symbionta? Nie muszą go pozyskiwać, bo T. azollae towarzyszy swojemu gospodarzowi przez cały cykl reprodukcyjny. Jest to jedyny znany przykład tego typu w całym królestwie roślin.

T. azollae żyje w przestworach utworzonych na spodzie wypukłego górnego płata liści azolli. Kiedy azolla przystępuje do rozmnażania płciowego, pod liśćmi powstają kuliste twory zwane sporokarpami, produkujące zarodniki. Dojrzewając, różnicują się one na męskie mikrosporokarpy i żeńskie makrosporokarpy. Nici cyjanobakterii początkowo doczepiają się do wszystkich sporokarpów, ale przeżywają tylko w makrosporokarpach. Ich komórki przetrwalnikowe zostają zdeponowane w specjalnym wydrążeniu makrosporokarpu, gdzie czekają, aż z zarodnika wykiełkuje żeński gametofit z rodnią zawierającą komórkę jajową. Po zapłodnieniu rozwija się młody sporofit, a zaczynając samodzielne życie, jest już zainfekowany przetrwalnikami cyjanobakterii. Niebawem dają one początek niciom z heterocystami wiążącymi azot, które zasiedlają przeznaczone dla nich wnęki utworzone przez liście. I tak w kółko od stu milionów lat.

Ze względu na błyskawiczne tempo rozrostu i zdolność do przetwarzania azotu atmosferycznego w przyswajalne formy tego pierwiastka azolla odgrywa od stuleci ważną rolę jako naturalny użyźniacz dla roślin uprawianych w środowisku wodnym, zwłaszcza na polach ryżowych. Może też służyć jako wysokobiałkowy pokarm dla zwierząt hodowlanych, choć to jej zastosowanie budzi kontrowersje: wspomniane wyżej neurotoksyny produkowane przez sinice stwarzają niedostatecznie zbadane ryzyko zarówno dla zwierząt karmionych azollą, jak i dla ludzi; wiadomo bowiem, że BMAA może się propagować w łańcuchach pokarmowych.

Winter is coming, czyli jak azolla zmieniła klimat Ziemi

We wczesnym eocenie, 49,3 mln lat temu, fragmenty superkontynentu Laurazji – Ameryka Północna, Azja, Europa Północna i Grenlandia – utworzyły niemal nieprzerwany pierścień wokół Oceanu Arktycznego (ryc. 4). Płytkie, epikontynentalne morze Obik i Cieśnina Turgajska, oddzielające Azję od Europy, zamknęły się na pewien czas (zresztą nie po raz pierwszy i nie ostatni w swojej historii), a jedynymi połączeniami między Oceanem Arktycznym a Tetydą i młodym Atlantykiem pozostały wąskie cieśniny po obu stronach Grenlandii. Klimat Ziemi był wówczas gorący, czego dowodzą choćby skamieniałości z Wyspy Ellesmere’a, o których pisałem tutaj. Fauna, którą dziś określilibyśmy jako tropikalną, żyła daleko za północnym kołem podbiegunowym, a także na Antarktydzie.

Brak prądów oceanicznych i słabe ruchy pionowe wód sprawiły, że na dnie Oceanu Arktycznego zapanowały warunki beztlenowe, a większość organizmów przydennych wymarła. Natomiast na powierzchni utrzymywała się warstwa słodkiej wody zasilana przez wielkie rzeki kilku kontynentów i obfite opady cieplarnianego eocenu. Rzeki transportowały składniki mineralne wypłukane ze złóż lądowych, a w szczególności – uwaga! – fosforany. Spłukiwały także do morza słodkowodne organizmy, a między innymi – paprocie z rodzaju Azolla. W eoceńskich osadach spod dna Oceanu Arktycznego zidentyfikowano trzy różne gatunki azolli (A. arctica, A. nova, A. astroborealis); żyły one także (w towarzystwie paru innych gatunków) w morzach wcinających się głęboko między masy lądowe po drugiej stronie cieśnin grenlandzkich. Było to możliwe, gdyż morza te (Labradorskie, Grenlandzko-Norweskie i Północne) pokrywały się przynajmniej okresowo warstwą słodkiej wody.

Ryc. 4.

Mając do dyspozycji ogromną powierzchnię słodkiej wody wzbogaconej w związki fosforu oraz atmosferyczny azot i wysoki poziom CO2, a w sezonie letnim dzień polarny trwający pół roku, azolla miała prawo szaleć ze szczęścia i podwajać swoją biomasę co kilkadziesiąt godzin. Cały Ocean Arktyczny i część przyległych mórz pokrywały się zwartym kożuchem pływającej paproci. Wyrwy powodowane przez sztormy lub wywołane obumieraniem azolli podczas nocy polarnej błyskawicznie zarastały z powrotem, kiedy warunki znów stawały się sprzyjające.

Jeden kilometr kwadratowy kożucha azolli potrafi związać rocznie 250 ton azotu i 1500 ton węgla, a paproć pokrywała sezonowo ok. 4 mln km2 wód arktycznych przez 1,2 mln lat. W normalnych warunkach węgiel powracałby do obiegu biologicznego, ponieważ obumarła azolla staje się pożywieniem mikroorganizmów i drobnych zwierząt roślinożernych. Ale w odwiertach z dna Oceanu Arktycznego (badania wykonano w 2004 r.) widzimy wielometrowe nagromadzenie sfosylizowanych warstw szczątków azolli, które tonęły i opadała aż do pozbawionej tlenu, martwej strefy zamkniętego morza. Biliony ton CO2 zostały w ten sposób wyssane z atmosfery, a węgiel związany przez azollę został pogrzebany na dnie oceanu i wyłączony z obiegu biologicznego. Stał się za to po przemianach chemicznych ważnym źródłem arktycznych złóż węglowodorów: gazu ziemnego i ropy naftowej.

Arktyczny superrozkwit azolli znacząco obniżył zawartość CO2 w atmosferze Ziemi. Można się spierać o dokładne liczby i o rolę innych czynników, ale wygląda na to, że azolla była głównym sprawcą spadku stężenia atmosferycznego CO2 mniej więcej o połowę w ciągu miliona lat. Epizod azolli zakończył się, gdy Ocean Arktyczny odzyskał połączenia z innymi oceanami, co przywróciło cyrkulację wody. Ale jeszcze zanim do tego doszło, ok. 48,5 mln lat temu tzw. wczesnoeoceńskie optimum klimatyczne zaczęło się chylić ku końcowi. Nigdy od tej pory nie powróciły skrajnie cieplarniane warunki paleocenu i wczesnego eocenu. Średnia temperatura globalna spadała systematycznie przez kolejne 20 mln lat (w środkowym eocenie nieco wzrosła, ale na krótko). Na początku oligocenu, ok. 30 mln lat temu, zaczęło się zlodowacenie Antarktydy − częściowo z powodu globalnego ochłodzenia, ale także dlatego, że ostateczny rozpad Gondwany umożliwił powstanie antarktycznego prądu wokółbiegunowego.

Podsumowanie

Jak widzieliśmy, symbioza cyjanobakterii z roślinami nie jest częsta. Może to dziwić, jeśli weźmiemy pod uwagę, że ewolucja roślin zaczęła się od współpracy z endosymbiotyczną sinicą, przodkiem chloroplastów. Z drugiej jednak strony, skoro już rośliny nabrały zdolności do fotosyntezy, kolejny fotosymbiont nie był już im potrzebny. Cyjanobakterie są natomiast przydatne jako źródło związków azotu (ale do tego nadają się także liczne inne bakterie azotowe). Mimo, że niewiele grup roślin zdecydowało się na skorzystanie z ich usług, widzimy całą skalę typów symbiozy: od luźnej kohabitacji mchów z epifitycznymi sinicami poprzez zapewnienie symbiontom specjalnej przestrzeni życiowej wewnątrz własnych tkanek (sagowce, glewiki, wątrobowce, torfowce) aż po związek na granicy endosymbiozy (przypadek parzeplinu) i włączenie sinicy w cykl rozrodczy rośliny (jak w przypadku azolli). W następnym i ostatnim odcinku tej serii poznamy przykłady organizmów, które (jak kiedyś prymitywni przodkowie roślin) wpuściły cyjanobakterie do wnętrza własnych komórek i po raz kolejny odegrały pradawny scenariusz endosymbiozy.

Przypisy

  1. Choć sinice są organizmami fotosyntetyzującymi par excellence (w końcu to one odkryły barwniki fotosyntetyczne takie jak chlorofil), przy braku światła mogą przechodzić na cudzożywność. Mają jednak bardzo specyficzne i zależne od gatunku wymagania pokarmowe (przyswajają tylko niektóre cukry proste, dwucukry i/lub glicerynę), zatem gospodarz musi im zapewnić zaopatrzenie w pożądane związki). ↩︎
  2. Rokietnik pospolity jest jednym z najczęściej spotykanych mchów polskich, ale stanowi także dominujący element runa leśnego lasów borealnych (w Kanadzie, na Alasce i w północnej Eurazji). Dzięki współżyciu z sinicami odgrywa wielką rolę w naturalnym obiegu azotu w tym ekosystemie. ↩︎
  3. Cyjanobakteria ta znana jest także pod nazwami Nostoc azollae i Anabaena azollae. Systematyka cyjanobakterii, w tym intensywnie badanego rzędu trzęsidłowców (Nostocales), do którego należą wszystkie omawiane tu symbionty, zmienia się szybko wraz z postępem badań, stąd duża liczba synonimów. ↩︎

Opisy ilustracji

Nagłówek. Trzęsidło (Nostoc sp.), cyjanobakteria będąca w istocie organizmem wielokomórkowym. Wśród zwykłych (fotosyntetyzujących) komórek wegetatywnych tworzących nici widoczne są heterocysty odpowiedzialne za wiązanie azotu atmosferycznego. Foto: rmatth. Źródło: iNaturalist (licencja CC BY-NC-SA 3.0).
Ryc. 1. Stuletni parzeplin brazylijski (Gunnera manicata) w Starym Ogrodzie Botanicznym Uniwersytetu w Getyndze (Niemcy). Foto: Piotr Gąsiorowski 2021 (licencja CC BY-NC-SA 4.0).
Ryc. 2. Sagowiec odwinięty (Cycas revoluta) w swoim naturalnym środowisku: Okinawa, wyspy Riukiu (Japonia), Foto: genjitsu (Takkaki Hattori) 2019. Źródło: iNaturalist (licencja CC BY 4.0).
Ryc. 3. Kożuch azolli „karolińskiej“ (Azolla filiculoides) na powierzchni wody. Foto: Rocío Esmeralda Pose 2021. Lokalizacja: Buenos Aires (Argentyna). Źródło: iNaturalist (licencja CC BY 4.0).
Ryc. 4. Mapa paleotektoniczna i rekonstrukcja paleogeograficzna zamkniętego Oceanu Arktycznego w eocenie (ok. 50 mln lat temu). Zielonkawa plama oznacza zasięg rozkwitu azolli. Źródło: Blakey 2021 (fair use).

Lektura dodatkowa

Udostępnij wpis

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *