Tytułowa przenośnia oznaczająca ryzykowne i nie do końca przemyślane działania została wymyślona przez Richarda Feynmana, gdy obserwował prace niektórych eksperymentatorów pracujących w ramach Projektu Manhattan. Przypomnę może, że jest to nazwa kodowa amerykańskiego tajnego programu dotyczącego wykorzystania energii jądrowej, zarówno do celów cywilnych, jak też czysto militarnych. Program zainicjowano dzięki słynnemu listowi Einsteina i Szilarda (1939), rozwinięto w latach 1942-46, a formalnie zakończono w 1947.
Cały program obejmował setki rozmaitych działań – od rozważań teoretycznych przez eksperymenty chemiczne, fizyczne, projekty stricte technologiczne aż do zwieńczenia, którym był test bomby jądrowej o nazwie kodowej Trinity.
Jednym z bardzo ważnych problemów, który musiał zostać rozwiązany w Los Alamos, było doświadczalne wyznaczenie wartości masy krytycznej. Nazywamy tak minimalną masę materiału rozszczepialnego, w której reakcja rozszczepienia jąder atomowych zaczyna przebiegać w sposób łańcuchowy. Obliczenia teoretyczne nie dały prostej i jednoznacznej odpowiedzi na pytanie o masę krytyczną. Różni uczeni uzyskiwali bardzo różne wartości – od kilkunastu kilogramów do ton (!). Dlatego też prowadzono eksperymenty, które mogłyby dać realną odpowiedź na pytanie o konkretną wartość, przynajmniej dla podstawowych pierwiastków – uranu-235 oraz plutonu-239.
Na czym te doświadczenia polegały? Były one dwutorowe. Jedne polegały na przygotowaniu dwóch półkul z materiału rozszczepialnego, a następnie zbliżaniu ich do siebie i monitorowaniu wzrostu promieniowania emitowanego przez ten zestaw. Oczywiście wszystko musiało być prowadzone bardzo ostrożnie, aby nie wywołać rzeczywistego wybuchu jądrowego. Do pewnego stopnia można by to porównać do prób zbliżania zapalonej zapałki do otwartej beczki z benzyną w celu wyznaczenia minimalnej odległości, w której pary benzyny się jeszcze nie zapalą.
W ramach drugich doświadczeń przygotowywano podobne półkule, ale dodatkowo otoczone połówkami wydrążonych kul wykonanych z materiału odbijającego neutrony. Dzięki takiej konstrukcji masa krytyczna materiału rozszczepialnego może być zdecydowanie mniejsza.
I właśnie takie eksperymenty prowadził m.in. Harry Daghlian. Był to bardzo błyskotliwy fizyk pochodzenia armeńsko-amerykańskiego. W wieku 17 lat zaczął studiować matematykę na MIT, ale szybko zakochał się w fizyce, którą ukończył w wieku 21 lat. W 1944 roku został zatrudniony w ramach Projektu Manhattan i przydzielony do grupy badającej masę krytyczną. 21 sierpnia 1945 r., a więc dwa tygodnie po zrzuceniu bomby na Hiroszimę, Daghlian przeprowadzał kolejne doświadczenie z wykorzystaniem rdzenia z plutonu-239 i deflektora neutronów wykonanego z kostek węglika wolframu. W pewnym momencie pozostała mu do dołożenia ostatnia kostka. Zbliżając ją do zestawu, zauważył, że promieniowanie zaczyna szybko rosnąć. W tym momencie popełnił błąd, który kosztował go życie. Cofając ręce, zahaczył o krawędź zestawu, kostka wpadła do środka, powodując start reakcji łańcuchowej. Młody fizyk szybko rozmontował kostki węglika, co zatrzymało reakcję. Niestety, w ciągu tego czasu pochłonął gigantyczną ilość promieniowania gamma i neutronowego. Szacuje się, że było to ok. 5 siwertów. Jest to dawka, która zwykle powoduje śmierć osoby napromieniowanej w ciągu miesiąca. Tak też było w tym przypadku. Daghlian zapadł w śpiączkę i pomimo troskliwej opieki medycznej zmarł po 25 dniach.
Plutonowy rdzeń był nadal wykorzystywany do badań. W 1946 r. zajął się nim kanadyjski fizyk, Louis Slotin. Ten 35-latek z Winnipeg zrobił w 1936 roku doktorat z chemii fizycznej w King’s College w Londynie, a w 1942 został członkiem zespołu badawczego w Los Alamos. 21 maja 1946 r. wykonywał eksperyment ze zbliżaniem do siebie połówek rdzenia z Pu-239. W typowym doświadczeniu kula plutonu jest umieszczona w połówce sfery wykonanej z berylu – reflektora neutronów. Druga połówka sfery jest oddzielona przekładkami dystansowymi. Slotin postanowił uprościć procedurę i zamiast przekładek użył zwykłego śrubokrętu. W pewnym momencie śrubokręt wysunął się z zestawu i górna część reflektora berylowego opadła na dolną, co spowodowało gwałtowny wzrost promieniowania – zestaw stał się nadkrytyczny. Pomieszczenie wypełniło niebieskie światło zjonizowanego powietrza [niektóre źródła twierdzą, że było to promieniowanie Czerenkowa – nie jestem kompetentny, aby to rozstrzygnąć]. Slotin zdążył jeszcze zrzucić górną półkulę berylową na podłogę, co zapobiegło większej tragedii. Poczuł w ustach kwaśny smak, a jego lewa ręka zaczęła silnie piec. Natychmiast po opuszczeniu budynku zaczął wymiotować. Były to typowe objawy silnej choroby popromiennej. Nic dziwnego – fizyk zaabsorbował ok. 21 siwertów promieniowania gamma i neutronowego. Jego los był przesądzony. Zmarł 9 dni później.
Harry Daghlian (drugi z lewej) i Louis Slotin (drugi z prawej) przyglądają się montażowi bomby do testu Trinity.
Źródło: Wikimedia, licencja: domena publiczna
Rdzeń wykorzystywany w obu tragicznych eksperymentach zyskał nazwę „demon core” („diabelski rdzeń”). Nie prowadzono z nim dalszych eksperymentów związanych z masą krytyczną.
Rekonstrukcja “diabelskiego rdzenia” z eksperymentu Slotina
Źródło: Wikimedia, licencja: Los Alamos National Laboratory
Literatura uzupełniająca
Moim zdaniem najlepsza książka opisująca amerykańską drogę do bomby jądrowej
Richard Rhodes – Jak powstała bomba atomowa
(c) by Mirosław Dworniczak. Jeśli chcesz wykorzystać ten tekst lub jego fragmenty, skontaktuj się z autorem. Linkować oczywiście można.
Bylo to pokazane w filmie fabularnym o Projekcie Manhattan. Niestety, nie pomnę tytułu. W filmie była to postać fikcyjnego fizyka, ale zdarzenie odtworzono tak, jak miało miejsce.
“Obliczenia teoretyczne nie dały prostej i jednoznacznej odpowiedzi na pytanie o masę krytyczną. Różni uczeni uzyskiwali bardzo różne wartości – od kilkunastu kilogramów do ton (!).”
— jakim cudem obliczenia teoretyczne dawały tak wielką rozbieżność, az o rzędy wielkości??
Za dużo czynników, które nie były wyznaczone. Przekrój czynny Pu-239, średnia droga neutronów termicznych, dystans między jądrami (gęstość), współczynnik multiplikacji neutronów…
To trochę tak, jak z równaniem Drake’a.
https://www.urania.edu.pl/astrobiologia/rownanie-drakea.html
Półgębkiem dorzucę, że w lipcu ma być premiera najnowszego (biograficznego) filmu Christophera Nolana pt. “Oppenheimer”, z Cillianem Murphym w roli tytułowej.
Jaram się jak Reksio na szynkę.
tam zostało napromieniowanych więcej osób, niektóre żyły naprawdę długo niejako udowadniając że jesteśmy całkiem dobrze przystosowani do radzenia sobie z wysokimi dawkami promieniowania
Oni stali znacznie dalej, dostali zdecydowanie mniejszą dawkę.
Dawka jest z grubsza odwrotnie proporcjonalna do kwadratu odległości od źródła.